Mercurial > hg > octave-lyh
comparison scripts/linear-algebra/condest.m @ 7189:e8d953d03f6a
[project @ 2007-11-26 20:42:09 by dbateman]
author | dbateman |
---|---|
date | Mon, 26 Nov 2007 20:42:11 +0000 |
parents | |
children | b48a21816f2e |
comparison
equal
deleted
inserted
replaced
7188:fdd7cd70dc14 | 7189:e8d953d03f6a |
---|---|
1 ## Copyright (C) 2007, Regents of the University of California | |
2 ## | |
3 ## This file is part of Octave. | |
4 ## | |
5 ## Octave is free software; you can redistribute it and/or modify it | |
6 ## under the terms of the GNU General Public License as published by | |
7 ## the Free Software Foundation; either version 3 of the License, or (at | |
8 ## your option) any later version. | |
9 ## | |
10 ## Octave is distributed in the hope that it will be useful, but | |
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 ## General Public License for more details. | |
14 ## | |
15 ## You should have received a copy of the GNU General Public License | |
16 ## along with Octave; see the file COPYING. If not, see | |
17 ## <http://www.gnu.org/licenses/>. | |
18 | |
19 ## -*- texinfo -*- | |
20 ## @deftypefn {Function File} {[@var{est}, @var{v}] =} condest (@var{A}, @var{t}) | |
21 ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@var{A}, @var{solve}, @var{solve_t}, @var{t}) | |
22 ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@var{apply}, @var{apply_t}, @var{solve}, @var{solve_t}, @var{n}, @var{t}) | |
23 ## | |
24 ## Estimate the 1-norm condition number of a matrix matrix @var{A} | |
25 ## using @var{t} test vectors using a randomized 1-norm estimator. | |
26 ## If @var{t} exceeds 5, then only 5 test vectors are used. | |
27 ## | |
28 ## If the matrix is not explicit, e.g. when estimating the condition | |
29 ## number of @var{A} given an LU factorization, @code{condest} uses the | |
30 ## following functions: | |
31 ## | |
32 ## @table @var | |
33 ## @item apply | |
34 ## @code{A*x} for a matrix @code{x} of size @var{n} by @var{t}. | |
35 ## @item apply_t | |
36 ## @code{A'*x} for a matrix @code{x} of size @var{n} by @var{t}. | |
37 ## @item solve | |
38 ## @code{A \ b} for a matrix @code{b} of size @var{n} by @var{t}. | |
39 ## @item solve_t | |
40 ## @code{A' \ b} for a matrix @code{b} of size @var{n} by @var{t}. | |
41 ## @end table | |
42 ## | |
43 ## The implicit version requires an explicit dimension @var{n}. | |
44 ## | |
45 ## @code{condest} uses a randomized algorithm to approximate | |
46 ## the 1-norms. | |
47 ## | |
48 ## @code{condest} returns the 1-norm condition estimate @var{est} and | |
49 ## a vector @var{v} satisfying @code{norm (@var{A}*@var{v}, 1) == norm | |
50 ## (@var{A}, 1) * norm (@var{v}, 1) / @var{est}}. When @var{est} is | |
51 ## large, @var{v} is an approximate null vector. | |
52 ## | |
53 ## References: | |
54 ## @itemize | |
55 ## @item Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm | |
56 ## for Matrix 1-Norm Estimation, with an Application to 1-Norm | |
57 ## Pseudospectra." SIMAX vol 21, no 4, pp 1185-1201. | |
58 ## @url{http://dx.doi.org/10.1137/S0895479899356080} | |
59 ## @item Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm | |
60 ## for Matrix 1-Norm Estimation, with an Application to 1-Norm | |
61 ## Pseudospectra." @url{http://citeseer.ist.psu.edu/223007.html} | |
62 ## @end itemize | |
63 ## | |
64 ## @seealso{norm, cond, onenormest} | |
65 ## | |
66 ## @end deftypefn | |
67 | |
68 ## Code originally licensed under | |
69 ## | |
70 ## Copyright (c) 2007, Regents of the University of California | |
71 ## All rights reserved. | |
72 ## Redistribution and use in source and binary forms, with or without | |
73 ## modification, are permitted provided that the following conditions are met: | |
74 ## | |
75 ## * Redistributions of source code must retain the above copyright | |
76 ## notice, this list of conditions and the following disclaimer. | |
77 ## * Redistributions in binary form must reproduce the above copyright | |
78 ## notice, this list of conditions and the following disclaimer in the | |
79 ## documentation and/or other materials provided with the distribution. | |
80 ## * Neither the name of the University of California, Berkeley nor the | |
81 ## names of its contributors may be used to endorse or promote products | |
82 ## derived from this software without specific prior written permission. | |
83 ## | |
84 ## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY | |
85 ## EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
86 ## WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
87 ## DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR | |
88 ## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
89 ## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
90 ## OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
91 ## HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
92 ## LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
93 ## OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
94 ## SUCH DAMAGE. | |
95 ## | |
96 ## Relicensed to GPL for inclusion in Octave. | |
97 | |
98 ## Author: Jason Riedy <ejr@cs.berkeley.edu> | |
99 ## Keywords: linear-algebra norm estimation | |
100 ## Version: 0.2 | |
101 | |
102 function [est, v] = condest (varargin) | |
103 if size (varargin, 2) < 1 || size (varargin, 2) > 5, | |
104 usage("condest: Incorrect arguments."); | |
105 endif | |
106 | |
107 default_t = 5; | |
108 | |
109 if (ismatrix (varargin{1})) | |
110 n = size (varargin{1}, 1); | |
111 if (n != size (varargin{1}, 2)) | |
112 error ("condest: matrix must be square."); | |
113 endif | |
114 A = varargin{1}; | |
115 | |
116 if (size (varargin, 2) > 1) | |
117 if (isscalar (varargin{2})) | |
118 t = varargin{2}; | |
119 else | |
120 if (size (varargin, 2) < 3) | |
121 error ("condest: must supply both solve and solve_t."); | |
122 else | |
123 solve = varargin{2}; | |
124 solve_t = varargin{3}; | |
125 if size (varargin, 2) > 3, | |
126 t = varargin{4}; | |
127 endif | |
128 endif | |
129 endif | |
130 endif | |
131 else | |
132 if (size (varargin, 2) < 5) | |
133 error ("condest: implicit form of condest requires at least 5 arguments."); | |
134 endif | |
135 apply = varargin{1}; | |
136 apply_t = varargin{2}; | |
137 solve = varargin{3}; | |
138 solve_t = varargin{4}; | |
139 n = varargin{5}; | |
140 if (! isscalar (n)) | |
141 error ("condest: dimension argument of implicit form must be scalar."); | |
142 endif | |
143 if (size (varargin, 2) > 5) | |
144 t = varargin{6}; | |
145 endif | |
146 endif | |
147 | |
148 if (! exist ("t", "var")) | |
149 t = min (n, default_t); | |
150 endif | |
151 | |
152 if (! exist ("solve", "var")) | |
153 if (issparse (A)) | |
154 [L, U, P, Pc] = splu (A); | |
155 solve = @(x) Pc' * (U\ (L\ (P*x))); | |
156 solve_t = @(x) P'*(L'\ (U'\ (Pc*x))); | |
157 else | |
158 [L, U, P] = lu (A); | |
159 solve = @(x) U\ (L\ (P*x)); | |
160 solve_t = @(x) P' * (L'\ (U'\x)); | |
161 endif | |
162 endif | |
163 | |
164 if (exist ("A", "var")) | |
165 Anorm = norm (A, 1); | |
166 else | |
167 Anorm = onenormest (apply, apply_t, n, t); | |
168 endif | |
169 | |
170 [Ainv_norm, v, w] = onenormest (solve, solve_t, n, t); | |
171 | |
172 est = Anorm * Ainv_norm; | |
173 v = w / norm (w, 1); | |
174 | |
175 endfunction | |
176 | |
177 %!demo | |
178 %! N = 100; | |
179 %! A = randn (N) + eye (N); | |
180 %! condest (A) | |
181 %! [L,U,P] = lu (A); | |
182 %! condest (A, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x))) | |
183 %! condest (@(x) A*x, @(x) A'*x, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x)), N) | |
184 %! norm (inv (A), 1) * norm (A, 1) | |
185 | |
186 ## Yes, these test bounds are really loose. There's | |
187 ## enough randomization to trigger odd cases with hilb(). | |
188 | |
189 %!test | |
190 %! N = 6; | |
191 %! A = hilb (N); | |
192 %! cA = condest (A); | |
193 %! cA_test = norm (inv (A), 1) * norm (A, 1); | |
194 %! assert (cA, cA_test, 2^-12); | |
195 | |
196 %!test | |
197 %! N = 6; | |
198 %! A = hilb (N); | |
199 %! solve = @(x) A\x; solve_t = @(x) A'\x; | |
200 %! cA = condest (A, solve, solve_t); | |
201 %! cA_test = norm (inv (A), 1) * norm (A, 1); | |
202 %! assert (cA, cA_test, 2^-12); | |
203 | |
204 %!test | |
205 %! N = 6; | |
206 %! A = hilb (N); | |
207 %! apply = @(x) A*x; apply_t = @(x) A'*x; | |
208 %! solve = @(x) A\x; solve_t = @(x) A'\x; | |
209 %! cA = condest (apply, apply_t, solve, solve_t, N); | |
210 %! cA_test = norm (inv (A), 1) * norm (A, 1); | |
211 %! assert (cA, cA_test, 2^-6); | |
212 | |
213 %!test | |
214 %! N = 12; | |
215 %! A = hilb (N); | |
216 %! [rcondA, v] = condest (A); | |
217 %! x = A*v; | |
218 %! assert (norm(x, inf), 0, eps); |