7189
|
1 ## Copyright (C) 2007, Regents of the University of California |
|
2 ## |
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
|
7 ## the Free Software Foundation; either version 3 of the License, or (at |
|
8 ## your option) any later version. |
|
9 ## |
|
10 ## Octave is distributed in the hope that it will be useful, but |
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 ## General Public License for more details. |
|
14 ## |
|
15 ## You should have received a copy of the GNU General Public License |
|
16 ## along with Octave; see the file COPYING. If not, see |
|
17 ## <http://www.gnu.org/licenses/>. |
|
18 |
|
19 ## -*- texinfo -*- |
|
20 ## @deftypefn {Function File} {[@var{est}, @var{v}] =} condest (@var{A}, @var{t}) |
|
21 ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@var{A}, @var{solve}, @var{solve_t}, @var{t}) |
|
22 ## @deftypefnx {Function File} {[@var{est}, @var{v}] =} condest (@var{apply}, @var{apply_t}, @var{solve}, @var{solve_t}, @var{n}, @var{t}) |
|
23 ## |
|
24 ## Estimate the 1-norm condition number of a matrix matrix @var{A} |
|
25 ## using @var{t} test vectors using a randomized 1-norm estimator. |
|
26 ## If @var{t} exceeds 5, then only 5 test vectors are used. |
|
27 ## |
|
28 ## If the matrix is not explicit, e.g. when estimating the condition |
|
29 ## number of @var{A} given an LU factorization, @code{condest} uses the |
|
30 ## following functions: |
|
31 ## |
|
32 ## @table @var |
|
33 ## @item apply |
|
34 ## @code{A*x} for a matrix @code{x} of size @var{n} by @var{t}. |
|
35 ## @item apply_t |
|
36 ## @code{A'*x} for a matrix @code{x} of size @var{n} by @var{t}. |
|
37 ## @item solve |
|
38 ## @code{A \ b} for a matrix @code{b} of size @var{n} by @var{t}. |
|
39 ## @item solve_t |
|
40 ## @code{A' \ b} for a matrix @code{b} of size @var{n} by @var{t}. |
|
41 ## @end table |
|
42 ## |
|
43 ## The implicit version requires an explicit dimension @var{n}. |
|
44 ## |
|
45 ## @code{condest} uses a randomized algorithm to approximate |
|
46 ## the 1-norms. |
|
47 ## |
|
48 ## @code{condest} returns the 1-norm condition estimate @var{est} and |
|
49 ## a vector @var{v} satisfying @code{norm (@var{A}*@var{v}, 1) == norm |
|
50 ## (@var{A}, 1) * norm (@var{v}, 1) / @var{est}}. When @var{est} is |
|
51 ## large, @var{v} is an approximate null vector. |
|
52 ## |
|
53 ## References: |
|
54 ## @itemize |
|
55 ## @item Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm |
|
56 ## for Matrix 1-Norm Estimation, with an Application to 1-Norm |
|
57 ## Pseudospectra." SIMAX vol 21, no 4, pp 1185-1201. |
|
58 ## @url{http://dx.doi.org/10.1137/S0895479899356080} |
|
59 ## @item Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm |
|
60 ## for Matrix 1-Norm Estimation, with an Application to 1-Norm |
|
61 ## Pseudospectra." @url{http://citeseer.ist.psu.edu/223007.html} |
|
62 ## @end itemize |
|
63 ## |
|
64 ## @seealso{norm, cond, onenormest} |
|
65 ## |
|
66 ## @end deftypefn |
|
67 |
|
68 ## Code originally licensed under |
|
69 ## |
|
70 ## Copyright (c) 2007, Regents of the University of California |
|
71 ## All rights reserved. |
|
72 ## Redistribution and use in source and binary forms, with or without |
|
73 ## modification, are permitted provided that the following conditions are met: |
|
74 ## |
|
75 ## * Redistributions of source code must retain the above copyright |
|
76 ## notice, this list of conditions and the following disclaimer. |
|
77 ## * Redistributions in binary form must reproduce the above copyright |
|
78 ## notice, this list of conditions and the following disclaimer in the |
|
79 ## documentation and/or other materials provided with the distribution. |
|
80 ## * Neither the name of the University of California, Berkeley nor the |
|
81 ## names of its contributors may be used to endorse or promote products |
|
82 ## derived from this software without specific prior written permission. |
|
83 ## |
|
84 ## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY |
|
85 ## EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
86 ## WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
87 ## DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR |
|
88 ## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
89 ## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
90 ## OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
91 ## HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
92 ## LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
93 ## OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
94 ## SUCH DAMAGE. |
|
95 ## |
|
96 ## Relicensed to GPL for inclusion in Octave. |
|
97 |
|
98 ## Author: Jason Riedy <ejr@cs.berkeley.edu> |
|
99 ## Keywords: linear-algebra norm estimation |
|
100 ## Version: 0.2 |
|
101 |
|
102 function [est, v] = condest (varargin) |
|
103 if size (varargin, 2) < 1 || size (varargin, 2) > 5, |
|
104 usage("condest: Incorrect arguments."); |
|
105 endif |
|
106 |
|
107 default_t = 5; |
|
108 |
|
109 if (ismatrix (varargin{1})) |
|
110 n = size (varargin{1}, 1); |
|
111 if (n != size (varargin{1}, 2)) |
|
112 error ("condest: matrix must be square."); |
|
113 endif |
|
114 A = varargin{1}; |
|
115 |
|
116 if (size (varargin, 2) > 1) |
|
117 if (isscalar (varargin{2})) |
|
118 t = varargin{2}; |
|
119 else |
|
120 if (size (varargin, 2) < 3) |
|
121 error ("condest: must supply both solve and solve_t."); |
|
122 else |
|
123 solve = varargin{2}; |
|
124 solve_t = varargin{3}; |
|
125 if size (varargin, 2) > 3, |
|
126 t = varargin{4}; |
|
127 endif |
|
128 endif |
|
129 endif |
|
130 endif |
|
131 else |
|
132 if (size (varargin, 2) < 5) |
|
133 error ("condest: implicit form of condest requires at least 5 arguments."); |
|
134 endif |
|
135 apply = varargin{1}; |
|
136 apply_t = varargin{2}; |
|
137 solve = varargin{3}; |
|
138 solve_t = varargin{4}; |
|
139 n = varargin{5}; |
|
140 if (! isscalar (n)) |
|
141 error ("condest: dimension argument of implicit form must be scalar."); |
|
142 endif |
|
143 if (size (varargin, 2) > 5) |
|
144 t = varargin{6}; |
|
145 endif |
|
146 endif |
|
147 |
|
148 if (! exist ("t", "var")) |
|
149 t = min (n, default_t); |
|
150 endif |
|
151 |
|
152 if (! exist ("solve", "var")) |
|
153 if (issparse (A)) |
|
154 [L, U, P, Pc] = splu (A); |
|
155 solve = @(x) Pc' * (U\ (L\ (P*x))); |
|
156 solve_t = @(x) P'*(L'\ (U'\ (Pc*x))); |
|
157 else |
|
158 [L, U, P] = lu (A); |
|
159 solve = @(x) U\ (L\ (P*x)); |
|
160 solve_t = @(x) P' * (L'\ (U'\x)); |
|
161 endif |
|
162 endif |
|
163 |
|
164 if (exist ("A", "var")) |
|
165 Anorm = norm (A, 1); |
|
166 else |
|
167 Anorm = onenormest (apply, apply_t, n, t); |
|
168 endif |
|
169 |
|
170 [Ainv_norm, v, w] = onenormest (solve, solve_t, n, t); |
|
171 |
|
172 est = Anorm * Ainv_norm; |
|
173 v = w / norm (w, 1); |
|
174 |
|
175 endfunction |
|
176 |
|
177 %!demo |
|
178 %! N = 100; |
|
179 %! A = randn (N) + eye (N); |
|
180 %! condest (A) |
|
181 %! [L,U,P] = lu (A); |
|
182 %! condest (A, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x))) |
|
183 %! condest (@(x) A*x, @(x) A'*x, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x)), N) |
|
184 %! norm (inv (A), 1) * norm (A, 1) |
|
185 |
|
186 ## Yes, these test bounds are really loose. There's |
|
187 ## enough randomization to trigger odd cases with hilb(). |
|
188 |
|
189 %!test |
|
190 %! N = 6; |
|
191 %! A = hilb (N); |
|
192 %! cA = condest (A); |
|
193 %! cA_test = norm (inv (A), 1) * norm (A, 1); |
|
194 %! assert (cA, cA_test, 2^-12); |
|
195 |
|
196 %!test |
|
197 %! N = 6; |
|
198 %! A = hilb (N); |
|
199 %! solve = @(x) A\x; solve_t = @(x) A'\x; |
|
200 %! cA = condest (A, solve, solve_t); |
|
201 %! cA_test = norm (inv (A), 1) * norm (A, 1); |
|
202 %! assert (cA, cA_test, 2^-12); |
|
203 |
|
204 %!test |
|
205 %! N = 6; |
|
206 %! A = hilb (N); |
|
207 %! apply = @(x) A*x; apply_t = @(x) A'*x; |
|
208 %! solve = @(x) A\x; solve_t = @(x) A'\x; |
|
209 %! cA = condest (apply, apply_t, solve, solve_t, N); |
|
210 %! cA_test = norm (inv (A), 1) * norm (A, 1); |
|
211 %! assert (cA, cA_test, 2^-6); |
|
212 |
|
213 %!test |
|
214 %! N = 12; |
|
215 %! A = hilb (N); |
|
216 %! [rcondA, v] = condest (A); |
|
217 %! x = A*v; |
|
218 %! assert (norm(x, inf), 0, eps); |