diff scripts/statistics/models/logistic_regression.m @ 3191:e4f4b2d26ee9

[project @ 1998-10-23 05:43:59 by jwe]
author jwe
date Fri, 23 Oct 1998 05:44:01 +0000
parents
children 041ea33fbbf4
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/scripts/statistics/models/logistic_regression.m
@@ -0,0 +1,170 @@
+## Copyright (C) 1995, 1996, 1997  Kurt Hornik
+## 
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2, or (at your option)
+## any later version.
+## 
+## This program is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details. 
+## 
+## You should have received a copy of the GNU General Public License
+## along with this file.  If not, write to the Free Software Foundation,
+## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+## Performs ordinal logistic regression.
+##
+## Suppose Y takes values in k ordered categories, and let gamma_i (x)
+## be the cumulative probability that Y falls in one of the first i
+## categories given the covariate x.  Then
+##   [theta, beta] =
+##     logistic_regression (y, x)
+## fits the model
+##   logit (gamma_i (x)) = theta_i - beta' * x,   i = 1, ..., k-1.
+## The number of ordinal categories, k, is taken to be the number of
+## distinct values of round (y) .  If k equals 2, y is binary and the
+## model is ordinary logistic regression. X is assumed to have full
+## column rank.
+##
+##   theta = logistic_regression (y)
+## fits the model with baseline logit odds only.
+##
+## The full form is
+##   [theta, beta, dev, dl, d2l, gamma] =
+##     logistic_regression (y, x, print, theta, beta)
+## in which all output arguments and all input arguments except y are
+## optional.
+##
+## print = 1 requests summary information about the fitted model to be
+## displayed; print = 2 requests information about convergence at each
+## iteration. Other values request no information to be displayed. The
+## input arguments `theta' and `beta' give initial estimates for theta
+## and beta.
+##
+## `dev' holds minus twice the log-likelihood.
+##
+## `dl' and `d2l' are the vector of first and the matrix of second
+## derivatives of the log-likelihood with respect to theta and beta.
+##
+## `p' holds estimates for the conditional distribution of Y given x.
+
+## Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>, 
+## U of Queensland, Australia, on Nov 19, 1990.  Last revision Aug 3,
+## 1992.
+
+## Author:  Gordon K Smyth <gks@maths.uq.oz.au>, 
+## Adapted-By:  KH <Kurt.Hornik@ci.tuwien.ac.at>
+## Description:  Ordinal logistic regression
+
+## Uses the auxiliary functions logistic_regression_derivatives and
+## logistic_regression_likelihood.
+
+function [theta, beta, dev, dl, d2l, p] ...
+      = logistic_regression (y, x, print, theta, beta)
+  
+  ## check input
+  y = round (vec (y)); 
+  [my ny] = size (y);   
+  if (nargin < 2)
+    x = zeros (my, 0); 
+  endif;
+  [mx nx] = size (x);
+  if (mx != my)
+    error ("x and y must have the same number of observations");
+  endif
+  
+  ## initial calculations
+  x = -x;
+  tol = 1e-6; incr = 10; decr = 2;
+  ymin = min (y); ymax = max (y); yrange = ymax - ymin;
+  z  = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1)));
+  z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax));
+  z  = z(:, any (z)); 
+  z1 = z1 (:, any(z1)); 
+  [mz nz] = size (z);
+  
+  ## starting values
+  if (nargin < 3)
+    print = 0; 
+  endif;
+  if (nargin < 4) 
+    beta = zeros (nx, 1);     
+  endif;
+  if (nargin < 5) 
+    g = cumsum (sum (z))' ./ my; 
+    theta = log (g ./ (1 - g)); 
+  endif;
+  tb = [theta; beta];
+
+  ## likelihood and derivatives at starting values
+  [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
+  [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p);
+  epsilon = std (vec (d2l)) / 1000;
+  
+  ## maximize likelihood using Levenberg modified Newton's method
+  iter = 0;
+  while (abs (dl' * (d2l \ dl) / length (dl)) > tol)
+    iter = iter + 1;
+    tbold = tb;
+    devold = dev;
+    tb = tbold - d2l \ dl;
+    [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
+    if ((dev - devold) / (dl' * (tb - tbold)) < 0)
+      epsilon = epsilon / decr;
+    else
+      while ((dev - devold) / (dl' * (tb - tbold)) > 0)
+	epsilon = epsilon * incr;
+         if (epsilon > 1e+15)
+	   error ("epsilon too large");
+         endif
+	 tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl;
+	 [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
+         disp ("epsilon"); disp (epsilon);
+      endwhile
+    endif
+    [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p);
+    if (print == 2)
+      disp ("Iteration"); disp (iter);
+      disp ("Deviance"); disp (dev);
+      disp ("First derivative"); disp (dl');
+      disp ("Eigenvalues of second derivative"); disp (eig (d2l)');
+    endif
+  endwhile
+
+  ## tidy up output
+
+  theta = tb (1 : nz, 1);
+  beta  = tb ((nz + 1) : (nz + nx), 1);
+
+  if (print >= 1)
+    printf ("\n");
+    printf ("Logistic Regression Results:\n");
+    printf ("\n");    
+    printf ("Number of Iterations:  %d\n", iter);
+    printf ("Deviance:              %f\n", dev);
+    printf ("Parameter Estimates:\n");
+    printf ("     Theta         S.E.\n");
+    se = sqrt (diag (inv (-d2l)));    
+    for i = 1 : nz
+      printf ("   %8.4f     %8.4f\n", tb (i), se (i));
+    endfor
+    if (nx > 0)
+      printf ("      Beta         S.E.\n");
+      for i = (nz + 1) : (nz + nx)
+	printf ("   %8.4f     %8.4f\n", tb (i), se (i));
+      endfor
+    endif
+  endif
+
+  if (nargout == 6)
+    if (nx > 0)
+      e = ((x * beta) * ones (1, nz)) + ((y * 0 + 1) * theta');
+    else
+      e = (y * 0 + 1) * theta';
+    endif
+    gamma = diff ([(y * 0) exp (e) ./ (1 + exp (e)) (y * 0 + 1)]')';
+  endif
+  
+endfunction