Mercurial > hg > octave-lyh
view scripts/statistics/models/logistic_regression.m @ 3191:e4f4b2d26ee9
[project @ 1998-10-23 05:43:59 by jwe]
author | jwe |
---|---|
date | Fri, 23 Oct 1998 05:44:01 +0000 |
parents | |
children | 041ea33fbbf4 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## Performs ordinal logistic regression. ## ## Suppose Y takes values in k ordered categories, and let gamma_i (x) ## be the cumulative probability that Y falls in one of the first i ## categories given the covariate x. Then ## [theta, beta] = ## logistic_regression (y, x) ## fits the model ## logit (gamma_i (x)) = theta_i - beta' * x, i = 1, ..., k-1. ## The number of ordinal categories, k, is taken to be the number of ## distinct values of round (y) . If k equals 2, y is binary and the ## model is ordinary logistic regression. X is assumed to have full ## column rank. ## ## theta = logistic_regression (y) ## fits the model with baseline logit odds only. ## ## The full form is ## [theta, beta, dev, dl, d2l, gamma] = ## logistic_regression (y, x, print, theta, beta) ## in which all output arguments and all input arguments except y are ## optional. ## ## print = 1 requests summary information about the fitted model to be ## displayed; print = 2 requests information about convergence at each ## iteration. Other values request no information to be displayed. The ## input arguments `theta' and `beta' give initial estimates for theta ## and beta. ## ## `dev' holds minus twice the log-likelihood. ## ## `dl' and `d2l' are the vector of first and the matrix of second ## derivatives of the log-likelihood with respect to theta and beta. ## ## `p' holds estimates for the conditional distribution of Y given x. ## Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>, ## U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3, ## 1992. ## Author: Gordon K Smyth <gks@maths.uq.oz.au>, ## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Ordinal logistic regression ## Uses the auxiliary functions logistic_regression_derivatives and ## logistic_regression_likelihood. function [theta, beta, dev, dl, d2l, p] ... = logistic_regression (y, x, print, theta, beta) ## check input y = round (vec (y)); [my ny] = size (y); if (nargin < 2) x = zeros (my, 0); endif; [mx nx] = size (x); if (mx != my) error ("x and y must have the same number of observations"); endif ## initial calculations x = -x; tol = 1e-6; incr = 10; decr = 2; ymin = min (y); ymax = max (y); yrange = ymax - ymin; z = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1))); z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax)); z = z(:, any (z)); z1 = z1 (:, any(z1)); [mz nz] = size (z); ## starting values if (nargin < 3) print = 0; endif; if (nargin < 4) beta = zeros (nx, 1); endif; if (nargin < 5) g = cumsum (sum (z))' ./ my; theta = log (g ./ (1 - g)); endif; tb = [theta; beta]; ## likelihood and derivatives at starting values [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); epsilon = std (vec (d2l)) / 1000; ## maximize likelihood using Levenberg modified Newton's method iter = 0; while (abs (dl' * (d2l \ dl) / length (dl)) > tol) iter = iter + 1; tbold = tb; devold = dev; tb = tbold - d2l \ dl; [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); if ((dev - devold) / (dl' * (tb - tbold)) < 0) epsilon = epsilon / decr; else while ((dev - devold) / (dl' * (tb - tbold)) > 0) epsilon = epsilon * incr; if (epsilon > 1e+15) error ("epsilon too large"); endif tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl; [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); disp ("epsilon"); disp (epsilon); endwhile endif [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); if (print == 2) disp ("Iteration"); disp (iter); disp ("Deviance"); disp (dev); disp ("First derivative"); disp (dl'); disp ("Eigenvalues of second derivative"); disp (eig (d2l)'); endif endwhile ## tidy up output theta = tb (1 : nz, 1); beta = tb ((nz + 1) : (nz + nx), 1); if (print >= 1) printf ("\n"); printf ("Logistic Regression Results:\n"); printf ("\n"); printf ("Number of Iterations: %d\n", iter); printf ("Deviance: %f\n", dev); printf ("Parameter Estimates:\n"); printf (" Theta S.E.\n"); se = sqrt (diag (inv (-d2l))); for i = 1 : nz printf (" %8.4f %8.4f\n", tb (i), se (i)); endfor if (nx > 0) printf (" Beta S.E.\n"); for i = (nz + 1) : (nz + nx) printf (" %8.4f %8.4f\n", tb (i), se (i)); endfor endif endif if (nargout == 6) if (nx > 0) e = ((x * beta) * ones (1, nz)) + ((y * 0 + 1) * theta'); else e = (y * 0 + 1) * theta'; endif gamma = diff ([(y * 0) exp (e) ./ (1 + exp (e)) (y * 0 + 1)]')'; endif endfunction