Mercurial > hg > octave-lyh
view scripts/general/interp3.m @ 9051:1bf0ce0930be
Grammar check TexInfo in all .m files
Cleanup documentation sources to follow a few consistent rules.
Spellcheck was NOT done. (but will be in another changeset)
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Fri, 27 Mar 2009 22:31:03 -0700 |
parents | eb63fbe60fab |
children | e9dc2ed2ec0f |
line wrap: on
line source
## Copyright (C) 2007, 2008 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} interp3 (@var{x}, @var{y},@var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}, @var{m}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@var{v}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval}) ## ## Perform 3-dimensional interpolation. Each element of the 3-dimensional ## array @var{v} represents a value at a location given by the parameters ## @var{x}, @var{y}, and @var{z}. The parameters @var{x}, @var{x}, and ## @var{z} are either 3-dimensional arrays of the same size as the array ## @var{v} in the 'meshgrid' format or vectors. The parameters @var{xi}, etc ## respect a similar format to @var{x}, etc, and they represent the points ## at which the array @var{vi} is interpolated. ## ## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be ## @code{x = 1 : size (@var{v}, 2)}, @code{y = 1 : size (@var{v}, 1)} and ## @code{z = 1 : size (@var{v}, 3)}. If @var{m} is specified, then ## the interpolation adds a point half way between each of the interpolation ## points. This process is performed @var{m} times. If only @var{v} is ## specified, then @var{m} is assumed to be @code{1}. ## ## Method is one of: ## ## @table @asis ## @item 'nearest' ## Return the nearest neighbour. ## @item 'linear' ## Linear interpolation from nearest neighbours. ## @item 'cubic' ## Cubic interpolation from four nearest neighbours (not implemented yet). ## @item 'spline' ## Cubic spline interpolation--smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is 'linear'. ## ## If @var{extrap} is the string 'extrap', then extrapolate values beyond ## the endpoints. If @var{extrap} is a number, replace values beyond the ## endpoints with that number. If @var{extrap} is missing, assume NA. ## @seealso{interp1, interp2, spline, meshgrid} ## @end deftypefn function vi = interp3 (varargin) method = "linear"; extrapval = NA; nargs = nargin; if (nargin < 1) print_usage (); endif if (ischar (varargin{end})) method = varargin{end}; nargs = nargs - 1; elseif (ischar (varargin{end-1})) if (! isnumeric (varargin{end}) || ! isscalar (varargin{end})) error ("extrapal is expected to be a numeric scalar"); endif extrapval = varargin{end}; method = varargin{end-1}; nargs = nargs - 2; endif if (nargs < 3 || (nargs == 4 && ! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1))) v = varargin{1}; if (ndims (v) != 3) error ("expect 3-dimensional array of values"); endif x = varargin (2:4); if (any (! cellfun (@isvector, x))) for i = 2 : 3 if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("dimensional mismatch"); endif x{i} = permute (x{i}, [2, 1, 3]); endfor x{1} = permute (x{1}, [2, 1, 3]); endif v = permute (v, [2, 1, 3]); vi = ipermute (interpn (v, x{:}, method, extrapval), [2, 1, 3]); elseif (nargs == 7 && nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1) v = varargin{4}; if (ndims (v) != 3) error ("expect 3-dimensional array of values"); endif x = varargin (1:3); if (any (! cellfun (@isvector, x))) for i = 2 : 3 if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("dimensional mismatch"); endif x{i} = permute (x{i}, [2, 1, 3]); endfor x{1} = permute (x{1}, [2, 1, 3]); endif y = varargin (5:7); if (any (! cellfun (@isvector, y))) for i = 2 : 3 if (! size_equal (y{1}, y{i})) error ("dimensional mismatch"); endif y{i} = permute (y{i}, [2, 1, 3]); endfor y{1} = permute (y{1}, [2, 1, 3]); endif v = permute (v, [2, 1, 3]); vi = ipermute (interpn (x{:}, v, y{:}, method, extrapval), [2, 1, 3]); else error ("wrong number or incorrectly formatted input arguments"); endif endfunction %!test %! x = y = z = -1:1; %! f = @(x,y,z) x.^2 - y - z.^2; %! [xx, yy, zz] = meshgrid (x, y, z); %! v = f (xx,yy,zz); %! xi = yi = zi = -1:0.5:1; %! [xxi, yyi, zzi] = meshgrid (xi, yi, zi); %! vi = interp3(x, y, z, v, xxi, yyi, zzi); %! [xxi, yyi, zzi] = ndgrid (xi, yi, zi); %! vi2 = interpn(x, y, z, v, xxi, yyi, zzi); %! assert (vi, vi2);