Mercurial > hg > octave-lyh
view scripts/statistics/base/gls.m @ 3456:434790acb067
[project @ 2000-01-19 06:58:51 by jwe]
author | jwe |
---|---|
date | Wed, 19 Jan 2000 06:59:23 +0000 |
parents | f8dde1807dee |
children | 3e3e14ad5149 |
line wrap: on
line source
## Copyright (C) 1996, 1997 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA ## 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o}) ## Generalized least squares estimation for the multivariate model ## @iftex ## @tex ## $y = x b + e$ ## with $\bar{e} = 0$ and cov(vec($e$)) = $(s^2)o$, ## @end tex ## @end iftex ## @ifinfo ## @code{@var{y} = @var{x} * @var{b} + @var{e}} with @code{mean (@var{e}) = ## 0} and @code{cov (vec (@var{e})) = (@var{s}^2)*@var{o}}, ## @end ifinfo ## where ## @iftex ## @tex ## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, $b$ is a $k ## \times p$ matrix, $e$ is a $t \times p$ matrix, and $o$ is a $tp \times ## tp$ matrix. ## @end tex ## @end iftex ## @ifinfo ## @var{Y} is a @var{T} by @var{p} matrix, @var{X} is a @var{T} by @var{k} ## matrix, @var{B} is a @var{k} by @var{p} matrix, @var{E} is a @var{T} by ## @var{p} matrix, and @var{O} is a @var{T}@var{p} by @var{T}@var{p} ## matrix. ## @end ifinfo ## ## @noindent ## Each row of Y and X is an observation and each column a variable. ## ## The return values @var{beta}, @var{v}, and @var{r} are defined as ## follows. ## ## @table @var ## @item beta ## The GLS estimator for @var{b}. ## ## @item v ## The GLS estimator for @code{@var{s}^2}. ## ## @item r ## The matrix of GLS residuals, @code{@var{r} = @var{y} - @var{x} * ## @var{beta}}. ## @end table ## @end deftypefn ## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at> ## Created: May 1993 ## Adapted-By: jwe function [BETA, v, R] = gls (Y, X, O) if (nargin != 3) usage ("[BETA, v, R] = gls (Y, X, O)"); endif [rx, cx] = size (X); [ry, cy] = size (Y); if (rx != ry) error ("gls: incorrect matrix dimensions"); endif O = O^(-1/2); Z = kron (eye (cy), X); Z = O * Z; Y1 = O * reshape (Y, ry*cy, 1); U = Z' * Z; r = rank (U); if (r == cx*cy) B = inv (U) * Z' * Y1; else B = pinv (Z) * Y1; endif BETA = reshape (B, cx, cy); R = Y - X * BETA; v = (reshape (R, ry*cy, 1))' * (O^2) * reshape (R, ry*cy, 1) / (rx*cy - r); endfunction