Mercurial > hg > octave-lyh
view scripts/statistics/base/gls.m @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 1996-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o}) ## Generalized least squares estimation for the multivariate model ## @tex ## $y = x b + e$ ## with $\bar{e} = 0$ and cov(vec($e$)) = $(s^2)o$, ## @end tex ## @ifnottex ## @w{@math{y = x*b + e}} with @math{mean (e) = 0} and ## @math{cov (vec (e)) = (s^2) o}, ## @end ifnottex ## where ## @tex ## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, $b$ is a $k ## \times p$ matrix, $e$ is a $t \times p$ matrix, and $o$ is a $tp \times ## tp$ matrix. ## @end tex ## @ifnottex ## @math{y} is a @math{t} by @math{p} matrix, @math{x} is a @math{t} by ## @math{k} matrix, @math{b} is a @math{k} by @math{p} matrix, @math{e} ## is a @math{t} by @math{p} matrix, and @math{o} is a @math{t*p} by ## @math{t*p} matrix. ## @end ifnottex ## ## @noindent ## Each row of @var{y} and @var{x} is an observation and each column a ## variable. The return values @var{beta}, @var{v}, and @var{r} are ## defined as follows. ## ## @table @var ## @item beta ## The GLS estimator for @math{b}. ## ## @item v ## The GLS estimator for @math{s^2}. ## ## @item r ## The matrix of GLS residuals, @math{r = y - x*beta}. ## @end table ## @seealso{ols} ## @end deftypefn ## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at> ## Created: May 1993 ## Adapted-By: jwe function [beta, v, r] = gls (y, x, o) if (nargin != 3) print_usage (); endif if (! (isnumeric (x) && isnumeric (y) && isnumeric (o))) error ("gls: X, Y, and O must be numeric matrices or vectors"); endif if (ndims (x) != 2 || ndims (y) != 2 || ndims (o) != 2) error ("gls: X, Y and O must be 2-D matrices or vectors"); endif [rx, cx] = size (x); [ry, cy] = size (y); [ro, co] = size (o); if (rx != ry) error ("gls: number of rows of X and Y must be equal"); endif if (!issquare (o) || ro != ry*cy) error ("gls: matrix O must be square matrix with rows = rows (Y) * cols (Y)"); endif if (isinteger (x)) x = double (x); endif if (isinteger (y)) y = double (y); endif if (isinteger (o)) o = double (o); endif ## Start of algorithm o = o^(-1/2); z = kron (eye (cy), x); z = o * z; y1 = o * reshape (y, ry*cy, 1); u = z' * z; r = rank (u); if (r == cx*cy) b = inv (u) * z' * y1; else b = pinv (z) * y1; endif beta = reshape (b, cx, cy); if (isargout (2) || isargout (3)) r = y - x * beta; if (isargout (2)) v = (reshape (r, ry*cy, 1))' * (o^2) * reshape (r, ry*cy, 1) / (rx*cy - r); endif endif endfunction %!test %! x = [1:5]'; %! y = 3*x + 2; %! x = [x, ones(5,1)]; %! o = diag (ones (5,1)); %! assert (gls (y,x,o), [3; 2], 50*eps); %% Test input validation %!error gls () %!error gls (1) %!error gls (1, 2) %!error gls (1, 2, 3, 4) %!error gls ([true, true], [1, 2], ones (2)) %!error gls ([1, 2], [true, true], ones (2)) %!error gls ([1, 2], [1, 2], true (2)) %!error gls (ones (2,2,2), ones (2,2), ones (4,4)) %!error gls (ones (2,2), ones (2,2,2), ones (4,4)) %!error gls (ones (2,2), ones (2,2), ones (4,4,4)) %!error gls (ones (1,2), ones (2,2), ones (2,2)) %!error gls (ones (2,2), ones (2,2), ones (2,2))