Mercurial > hg > octave-lyh
view scripts/plot/meshc.m @ 17458:43e0b711d7e0
doc: Correct accidental capitalization @var{Z} in mesh/surf docstrings.
* scripts/plot/mesh.m, scripts/plot/meshc.m, scripts/plot/meshz.m,
scripts/plot/surf.m, scripts/plot/surfc.m, scripts/plot/waterfall.m:
Correct accidental capitalization @var{Z} in mesh/surf docstrings.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 19 Sep 2013 15:22:26 -0700 |
parents | 68bcac3c043a |
children |
line wrap: on
line source
## Copyright (C) 1996-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} meshc (@var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {} meshc (@var{z}) ## @deftypefnx {Function File} {} meshc (@dots{}, @var{c}) ## @deftypefnx {Function File} {} meshc (@dots{}, @var{prop}, @var{val}, @dots{}) ## @deftypefnx {Function File} {} meshc (@var{hax}, @dots{}) ## @deftypefnx {Function File} {@var{h} =} meshc (@dots{}) ## Plot a 3-D wireframe mesh with underlying contour lines. ## ## The wireframe mesh is plotted using rectangles. The vertices of the ## rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}. ## over a 2-D rectangular region in the x-y plane. @var{z} determines the ## height above the plane of each vertex. If only a single @var{z} matrix is ## given, then it is plotted over the meshgrid ## @code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}. ## Thus, columns of @var{z} correspond to different @var{x} values and rows ## of @var{z} correspond to different @var{y} values. ## ## The color of the mesh is computed by linearly scaling the @var{z} values ## to fit the range of the current colormap. Use @code{caxis} and/or ## change the colormap to control the appearance. ## ## Optionally the color of the mesh can be specified independently of @var{z} ## by supplying a color matrix, @var{c}. ## ## Any property/value pairs are passed directly to the underlying surface ## object. ## ## If the first argument @var{hax} is an axes handle, then plot into this axis, ## rather than the current axes returned by @code{gca}. ## ## The optional return value @var{h} is a 2-element vector with a graphics ## handle to the created surface object and to the created contour plot. ## ## @seealso{ezmeshc, mesh, meshz, contour, surfc, surface, meshgrid, hidden, shading, colormap, caxis} ## @end deftypefn function h = meshc (varargin) if (! all (cellfun ("isreal", varargin))) error ("meshc: X, Y, Z, C arguments must be real"); endif [hax, varargin, nargin] = __plt_get_axis_arg__ ("meshc", varargin{:}); oldfig = []; if (! isempty (hax)) oldfig = get (0, "currentfigure"); endif unwind_protect hax = newplot (hax); htmp = surface (varargin{:}); ## FIXME - gnuplot does not support a filled surface and a ## non-filled contour. 3D filled patches are also not supported. ## Thus, the facecolor will be transparent for the gnuplot backend. set (htmp, "facecolor", "w"); set (htmp, "edgecolor", "flat"); if (! ishold ()) set (hax, "view", [-37.5, 30], "xgrid", "on", "ygrid", "on", "zgrid", "on", "xlimmode", "manual", "ylimmode", "manual"); endif drawnow (); zmin = get (hax, "zlim")(1); [~, htmp2] = __contour__ (hax, zmin, varargin{:}); htmp = [htmp; htmp2]; unwind_protect_cleanup if (! isempty (oldfig)) set (0, "currentfigure", oldfig); endif end_unwind_protect if (nargout > 0) h = htmp; endif endfunction %!demo %! clf; %! colormap ('default'); %! [X, Y] = meshgrid (linspace (-3, 3, 40)); %! Z = sqrt (abs (X .* Y)) ./ (1 + X.^2 + Y.^2); %! meshc (X, Y, Z); %! title ('meshc() combines mesh/contour plots');