Mercurial > hg > octave-lyh
view doc/interpreter/arith.txi @ 10668:72585f1ca7a2
Replace @ifinfo with @ifnottex.
Non-Tex documentation can now flow through to HTML format.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Thu, 27 May 2010 12:13:28 -0700 |
parents | 923c7cb7f13f |
children | 3140cb7a05a1 |
line wrap: on
line source
@c Copyright (C) 1996, 1997, 1999, 2000, 2001, 2002, 2007, 2008, @c 2009 John W. Eaton @c @c This file is part of Octave. @c @c Octave is free software; you can redistribute it and/or modify it @c under the terms of the GNU General Public License as published by the @c Free Software Foundation; either version 3 of the License, or (at @c your option) any later version. @c @c Octave is distributed in the hope that it will be useful, but WITHOUT @c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or @c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License @c for more details. @c @c You should have received a copy of the GNU General Public License @c along with Octave; see the file COPYING. If not, see @c <http://www.gnu.org/licenses/>. @node Arithmetic @chapter Arithmetic Unless otherwise noted, all of the functions described in this chapter will work for real and complex scalar, vector, or matrix arguments. Functions described as @dfn{mapping functions} apply the given operation individually to each element when given a matrix argument. For example, @example @group sin ([1, 2; 3, 4]) @result{} 0.84147 0.90930 0.14112 -0.75680 @end group @end example @menu * Exponents and Logarithms:: * Complex Arithmetic:: * Trigonometry:: * Sums and Products:: * Utility Functions:: * Special Functions:: * Coordinate Transformations:: * Mathematical Constants:: @end menu @node Exponents and Logarithms @section Exponents and Logarithms @DOCSTRING(exp) @DOCSTRING(expm1) @DOCSTRING(log) @DOCSTRING(log1p) @DOCSTRING(log10) @DOCSTRING(log2) @DOCSTRING(nextpow2) @DOCSTRING(nthroot) @DOCSTRING(pow2) @DOCSTRING(reallog) @DOCSTRING(realpow) @DOCSTRING(realsqrt) @DOCSTRING(sqrt) @node Complex Arithmetic @section Complex Arithmetic In the descriptions of the following functions, @tex $z$ is the complex number $x + iy$, where $i$ is defined as $\sqrt{-1}$. @end tex @ifnottex @var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is defined as @code{sqrt (-1)}. @end ifnottex @DOCSTRING(abs) @DOCSTRING(arg) @DOCSTRING(conj) @DOCSTRING(cplxpair) @DOCSTRING(imag) @DOCSTRING(real) @node Trigonometry @section Trigonometry Octave provides the following trigonometric functions where angles are specified in radians. To convert from degrees to radians multiply by @tex $\pi/180$ @end tex @ifnottex @code{pi/180} @end ifnottex (e.g., @code{sin (30 * pi/180)} returns the sine of 30 degrees). As an alternative, Octave provides a number of trigonometric functions which work directly on an argument specified in degrees. These functions are named after the base trigonometric function with a @samp{d} suffix. For example, @code{sin} expects an angle in radians while @code{sind} expects an angle in degrees. @DOCSTRING(sin) @DOCSTRING(cos) @DOCSTRING(tan) @DOCSTRING(sec) @DOCSTRING(csc) @DOCSTRING(cot) @DOCSTRING(asin) @DOCSTRING(acos) @DOCSTRING(atan) @DOCSTRING(asec) @DOCSTRING(acsc) @DOCSTRING(acot) @DOCSTRING(sinh) @DOCSTRING(cosh) @DOCSTRING(tanh) @DOCSTRING(sech) @DOCSTRING(csch) @DOCSTRING(coth) @DOCSTRING(asinh) @DOCSTRING(acosh) @DOCSTRING(atanh) @DOCSTRING(asech) @DOCSTRING(acsch) @DOCSTRING(acoth) @DOCSTRING(atan2) Octave provides the following trigonometric functions where angles are specified in degrees. These functions produce true zeros at the appropriate intervals rather than the small roundoff error that occurs when using radians. For example: @example @group cosd (90) @result{} 0 cos (pi/2) @result{} 6.1230e-17 @end group @end example @DOCSTRING(sind) @DOCSTRING(cosd) @DOCSTRING(tand) @DOCSTRING(secd) @DOCSTRING(cscd) @DOCSTRING(cotd) @DOCSTRING(asind) @DOCSTRING(acosd) @DOCSTRING(atand) @DOCSTRING(asecd) @DOCSTRING(acscd) @DOCSTRING(acotd) @node Sums and Products @section Sums and Products @DOCSTRING(sum) @DOCSTRING(prod) @DOCSTRING(cumsum) @DOCSTRING(cumprod) @DOCSTRING(sumsq) @DOCSTRING(accumarray) @node Utility Functions @section Utility Functions @DOCSTRING(ceil) @DOCSTRING(cross) @DOCSTRING(del2) @DOCSTRING(factor) @DOCSTRING(factorial) @DOCSTRING(fix) @DOCSTRING(floor) @DOCSTRING(fmod) @DOCSTRING(gcd) @DOCSTRING(gradient) @DOCSTRING(hypot) @DOCSTRING(lcm) @DOCSTRING(list_primes) @DOCSTRING(max) @DOCSTRING(min) @DOCSTRING(cummax) @DOCSTRING(cummin) @DOCSTRING(mod) @DOCSTRING(primes) @DOCSTRING(rem) @DOCSTRING(round) @DOCSTRING(roundb) @DOCSTRING(sign) @node Special Functions @section Special Functions @DOCSTRING(airy) @DOCSTRING(besselj) @DOCSTRING(beta) @DOCSTRING(betainc) @DOCSTRING(betaln) @DOCSTRING(bincoeff) @DOCSTRING(commutation_matrix) @DOCSTRING(duplication_matrix) @DOCSTRING(erf) @DOCSTRING(erfc) @DOCSTRING(erfinv) @DOCSTRING(gamma) @DOCSTRING(gammainc) @DOCSTRING(legendre) @anchor{doc-gammaln} @DOCSTRING(lgamma) @node Coordinate Transformations @section Coordinate Transformations @DOCSTRING(cart2pol) @DOCSTRING(pol2cart) @DOCSTRING(cart2sph) @DOCSTRING(sph2cart) @node Mathematical Constants @section Mathematical Constants @DOCSTRING(e) @DOCSTRING(pi) @DOCSTRING(I) @DOCSTRING(Inf) @DOCSTRING(NaN) @DOCSTRING(eps) @DOCSTRING(realmax) @DOCSTRING(realmin)