Mercurial > hg > octave-lyh
changeset 10668:72585f1ca7a2
Replace @ifinfo with @ifnottex.
Non-Tex documentation can now flow through to HTML format.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Thu, 27 May 2010 12:13:28 -0700 |
parents | 6769fbfec739 |
children | cab3b148d4e4 |
files | doc/ChangeLog doc/interpreter/arith.txi doc/interpreter/diffeq.txi doc/interpreter/intro.txi doc/interpreter/nonlin.txi doc/interpreter/poly.txi doc/interpreter/sparse.txi |
diffstat | 7 files changed, 37 insertions(+), 48 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/ChangeLog +++ b/doc/ChangeLog @@ -1,3 +1,9 @@ +2010-05-27 Rik <octave@nomad.inbox5.com> + + * interpreter/arith.txi, interpreter/diffeq.txi, interpreter/intro.txi, + interpreter/nonlin.txi, interpreter/poly.txi, interpreter/sparse.txi: + Replace @ifinfo with @ifnottex. + 2010-05-07 John W. Eaton <jwe@octave.org> * basics.txi: Update list of internal variables for --traditional.
--- a/doc/interpreter/arith.txi +++ b/doc/interpreter/arith.txi @@ -81,10 +81,10 @@ $z$ is the complex number $x + iy$, where $i$ is defined as $\sqrt{-1}$. @end tex -@ifinfo +@ifnottex @var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is defined as @code{sqrt (-1)}. -@end ifinfo +@end ifnottex @DOCSTRING(abs)
--- a/doc/interpreter/diffeq.txi +++ b/doc/interpreter/diffeq.txi @@ -41,7 +41,7 @@ {dx\over dt} = f (x, t) $$ @end tex -@ifinfo +@ifnottex @example @group @@ -50,10 +50,10 @@ dt @end group @end example -@end ifinfo +@end ifnottex @noindent -using Hindmarsh's ODE solver @sc{Lsode}. +using Hindmarsh's ODE solver @sc{lsode}.
--- a/doc/interpreter/intro.txi +++ b/doc/interpreter/intro.txi @@ -535,10 +535,10 @@ Functions, commands, and variables are described in this manual in a uniform format. The first line of a description contains the name of the item followed by its arguments, if any. -@ifinfo +@ifnottex The category---function, variable, or whatever---appears at the beginning of the line. -@end ifinfo +@end ifnottex @iftex The category---function, variable, or whatever---is printed next to the right margin.
--- a/doc/interpreter/nonlin.txi +++ b/doc/interpreter/nonlin.txi @@ -49,7 +49,7 @@ 3x^2 - 2xy^2 + 3\cos(x) + 4 &= 0} $$ @end tex -@ifinfo +@ifnottex @example @group @@ -57,7 +57,7 @@ 3x^2 - 2xy^2 + 3 cos(x) = -4 @end group @end example -@end ifinfo +@end ifnottex @noindent you first need to write a function to compute the value of the given
--- a/doc/interpreter/poly.txi +++ b/doc/interpreter/poly.txi @@ -28,13 +28,13 @@ p (x) = c_1 x^N + \ldots + c_N x + c_{N+1}. $$ @end tex -@ifinfo +@ifnottex @var{N} @example p(x) = @var{c}(1) x^@var{N} + @dots{} + @var{c}(@var{N}) x + @var{c}(@var{N}+1). @end example -@end ifinfo +@end ifnottex @menu * Evaluating Polynomials::
--- a/doc/interpreter/sparse.txi +++ b/doc/interpreter/sparse.txi @@ -887,33 +887,16 @@ Laplace equation. This system can model scalar potential fields, such as heat or electrical potential. Given a medium @tex -$\Omega$ -@end tex -@ifinfo -Omega -@end ifinfo -with boundary -@tex -$\partial\Omega$ +$\Omega$ with boundary $\partial\Omega$. At all points on the $\partial\Omega$ +the boundary conditions are known, and we wish to calculate the potential in +$\Omega$. @end tex -@ifinfo -dOmega -@end ifinfo -. At all points on the -@tex -$\partial\Omega$ -@end tex -@ifinfo -dOmega -@end ifinfo +@ifnottex +Omega with boundary dOmega. At all points on the dOmega the boundary conditions are known, and we wish to calculate the potential in -@tex -$\Omega$ -@end tex -@ifinfo -Omega -@end ifinfo -. Boundary conditions may specify the potential (Dirichlet +Omega. +@end ifnottex +Boundary conditions may specify the potential (Dirichlet boundary condition), its normal derivative across the boundary (Neumann boundary condition), or a weighted sum of the potential and its derivative (Cauchy boundary condition). @@ -922,9 +905,9 @@ @tex $\Omega$ @end tex -@ifinfo +@ifnottex Omega -@end ifinfo +@end ifnottex and know the boundary temperature (Dirichlet condition) or heat flux (from which we can calculate the Neumann condition by dividing by the thermal conductivity at the boundary). Similarly, @@ -932,9 +915,9 @@ @tex $\Omega$ @end tex -@ifinfo +@ifnottex Omega -@end ifinfo +@end ifnottex and know the boundary voltage (Dirichlet) or current (Neumann condition after diving by the electrical conductivity). In an electrical model, it is common for much of the boundary @@ -945,9 +928,9 @@ @tex $\Omega$ @end tex -@ifinfo +@ifnottex Omega -@end ifinfo +@end ifnottex into simplexes (triangles in 2D, pyramids in 3D). @ifset htmltex We take as an 3D example a cylindrical liquid filled tank with a small @@ -1008,9 +991,9 @@ @tex $\Omega$ @end tex -@ifinfo +@ifnottex Omega -@end ifinfo +@end ifnottex as constant on each simplex (represented by the vector @code{conductivity}). Based on the finite element geometry, we first calculate a system (or stiffness) matrix for each simplex (represented as 3-by-3 elements on the @@ -1052,16 +1035,16 @@ @tex $S$ @end tex -@ifinfo +@ifnottex @code{S} -@end ifinfo +@end ifnottex in Ohm's law @tex $SV = I$. @end tex -@ifinfo +@ifnottex @code{S * V = I}. -@end ifinfo +@end ifnottex Based on the Dirichlet and Neumann boundary conditions, we are able to solve for the voltages at each vertex @code{V}.