Mercurial > hg > octave-lyh
view liboctave/RowVector.cc @ 238:780cbbc57b7c
[project @ 1993-11-30 20:23:04 by jwe]
author | jwe |
---|---|
date | Tue, 30 Nov 1993 20:23:04 +0000 |
parents | 9a6ecd8b50bc |
children | 9c74d7d76f3d |
line wrap: on
line source
// RowVector manipulations. -*- C++ -*- /* Copyright (C) 1992, 1993 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "Matrix.h" #include "mx-inlines.cc" #include "lo-error.h" #include "f77-uscore.h" // Fortran functions we call. extern "C" { int F77_FCN (dgemv) (const char*, const int*, const int*, const double*, const double*, const int*, const double*, const int*, const double*, double*, const int*, long); double F77_FCN (ddot) (const int*, const double*, const int*, const double*, const int*); /* * f2c translates complex*16 as * * typedef struct { doublereal re, im; } doublecomplex; * * and Complex.h from libg++ uses * * protected: * double re; * double im; * * as the only data members, so this should work (fingers crossed that * things don't change). */ int F77_FCN (zgemv) (const char*, const int*, const int*, const Complex*, const Complex*, const int*, const Complex*, const int*, const Complex*, Complex*, const int*, long); } /* * Row Vector class. */ #if 0 RowVector& RowVector::resize (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimension"); return *this; } double *new_data = (double *) NULL; if (n > 0) { new_data = new double [n]; int min_len = len < n ? len : n; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; len = n; data = new_data; return *this; } RowVector& RowVector::resize (int n, double val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } #endif int RowVector::operator == (const RowVector& a) const { int len = length (); if (len != a.length ()) return 0; return equal (data (), a.data (), len); } int RowVector::operator != (const RowVector& a) const { return !(*this == a); } RowVector& RowVector::insert (const RowVector& a, int c) { int a_len = a.length (); if (c < 0 || c + a_len - 1 > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (c+i) = a.elem (i); return *this; } RowVector& RowVector::fill (double val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } RowVector& RowVector::fill (double val, int c1, int c2) { int len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) elem (i) = val; return *this; } RowVector RowVector::append (const RowVector& a) const { int len = length (); int nc_insert = len; RowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ColumnVector RowVector::transpose (void) const { int len = length (); return ColumnVector (dup (data (), len), len); } RowVector RowVector::extract (int c1, int c2) const { if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_c = c2 - c1 + 1; RowVector result (new_c); for (int i = 0; i < new_c; i++) result.elem (i) = elem (c1+i); return result; } // row vector by row vector -> row vector operations RowVector& RowVector::operator += (const RowVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; double *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } RowVector& RowVector::operator -= (const RowVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; double *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } // row vector by scalar -> row vector operations ComplexRowVector operator + (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (add (v.data (), len, s), len); } ComplexRowVector operator - (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (subtract (v.data (), len, s), len); } ComplexRowVector operator * (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (multiply (v.data (), len, s), len); } ComplexRowVector operator / (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (divide (v.data (), len, s), len); } // scalar by row vector -> row vector operations ComplexRowVector operator + (const Complex& s, const RowVector& a) { return ComplexRowVector (); } ComplexRowVector operator - (const Complex& s, const RowVector& a) { return ComplexRowVector (); } ComplexRowVector operator * (const Complex& s, const RowVector& a) { return ComplexRowVector (); } ComplexRowVector operator / (const Complex& s, const RowVector& a) { return ComplexRowVector (); } // row vector by column vector -> scalar double operator * (const RowVector& v, const ColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return 0.0; } int i_one = 1; return F77_FCN (ddot) (&len, v.data (), &i_one, a.data (), &i_one); } Complex operator * (const RowVector& v, const ComplexColumnVector& a) { ComplexRowVector tmp (v); return tmp * a; } // row vector by matrix -> row vector RowVector operator * (const RowVector& v, const Matrix& a) { int len = v.length (); if (a.rows () != len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return RowVector (); } if (len == 0 || a.cols () == 0) return RowVector (0); // Transpose A to form A'*x == (x'*A)' int a_nr = a.rows (); int a_nc = a.cols (); char trans = 'T'; int ld = a_nr; double alpha = 1.0; double beta = 0.0; int i_one = 1; double *y = new double [len]; F77_FCN (dgemv) (&trans, &a_nc, &a_nr, &alpha, a.data (), &ld, v.data (), &i_one, &beta, y, &i_one, 1L); return RowVector (y, len); } ComplexRowVector operator * (const RowVector& v, const ComplexMatrix& a) { ComplexRowVector tmp (v); return tmp * a; } // row vector by row vector -> row vector operations ComplexRowVector operator + (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (v.data (), a.data (), len), len); } ComplexRowVector operator - (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (v.data (), a.data (), len), len); } ComplexRowVector product (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (v.data (), a.data (), len), len); } ComplexRowVector quotient (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (v.data (), a.data (), len), len); } // other operations RowVector map (d_d_Mapper f, const RowVector& a) { RowVector b (a); b.map (f); return b; } void RowVector::map (d_d_Mapper f) { for (int i = 0; i < length (); i++) elem (i) = f (elem (i)); } double RowVector::min (void) const { int len = length (); if (len == 0) return 0; double res = elem (0); for (int i = 1; i < len; i++) if (elem (i) < res) res = elem (i); return res; } double RowVector::max (void) const { int len = length (); if (len == 0) return 0; double res = elem (0); for (int i = 1; i < len; i++) if (elem (i) > res) res = elem (i); return res; } ostream& operator << (ostream& os, const RowVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.length (); i++) os << " " /* setw (field_width) */ << a.elem (i); return os; } /* * Complex Row Vector class */ ComplexRowVector::ComplexRowVector (const RowVector& a) : Array<Complex> (a.length ()) { for (int i = 0; i < length (); i++) elem (i) = a.elem (i); } #if 0 ComplexRowVector& ComplexRowVector::resize (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimension"); return *this; } Complex *new_data = (Complex *) NULL; if (n > 0) { new_data = new Complex [n]; int min_len = len < n ? len : n; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; len = n; data = new_data; return *this; } ComplexRowVector& ComplexRowVector::resize (int n, double val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } ComplexRowVector& ComplexRowVector::resize (int n, const Complex& val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } #endif int ComplexRowVector::operator == (const ComplexRowVector& a) const { int len = length (); if (len != a.length ()) return 0; return equal (data (), a.data (), len); } int ComplexRowVector::operator != (const ComplexRowVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexRowVector& ComplexRowVector::insert (const RowVector& a, int c) { int a_len = a.length (); if (c < 0 || c + a_len - 1 > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (c+i) = a.elem (i); return *this; } ComplexRowVector& ComplexRowVector::insert (const ComplexRowVector& a, int c) { int a_len = a.length (); if (c < 0 || c + a_len - 1 > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (c+i) = a.elem (i); return *this; } ComplexRowVector& ComplexRowVector::fill (double val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexRowVector& ComplexRowVector::fill (const Complex& val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexRowVector& ComplexRowVector::fill (double val, int c1, int c2) { int len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) elem (i) = val; return *this; } ComplexRowVector& ComplexRowVector::fill (const Complex& val, int c1, int c2) { int len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) elem (i) = val; return *this; } ComplexRowVector ComplexRowVector::append (const RowVector& a) const { int len = length (); int nc_insert = len; ComplexRowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ComplexRowVector ComplexRowVector::append (const ComplexRowVector& a) const { int len = length (); int nc_insert = len; ComplexRowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ComplexColumnVector ComplexRowVector::hermitian (void) const { int len = length (); return ComplexColumnVector (conj_dup (data (), len), len); } ComplexColumnVector ComplexRowVector::transpose (void) const { int len = length (); return ComplexColumnVector (dup (data (), len), len); } RowVector real (const ComplexRowVector& a) { int a_len = a.length (); RowVector retval; if (a_len > 0) retval = RowVector (real_dup (a.data (), a_len), a_len); return retval; } RowVector imag (const ComplexRowVector& a) { int a_len = a.length (); RowVector retval; if (a_len > 0) retval = RowVector (imag_dup (a.data (), a_len), a_len); return retval; } ComplexRowVector conj (const ComplexRowVector& a) { int a_len = a.length (); ComplexRowVector retval; if (a_len > 0) retval = ComplexRowVector (conj_dup (a.data (), a_len), a_len); return retval; } // resize is the destructive equivalent for this one ComplexRowVector ComplexRowVector::extract (int c1, int c2) const { if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_c = c2 - c1 + 1; ComplexRowVector result (new_c); for (int i = 0; i < new_c; i++) result.elem (i) = elem (c1+i); return result; } // row vector by row vector -> row vector operations ComplexRowVector& ComplexRowVector::operator += (const RowVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexRowVector& ComplexRowVector::operator -= (const RowVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } ComplexRowVector& ComplexRowVector::operator += (const ComplexRowVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexRowVector& ComplexRowVector::operator -= (const ComplexRowVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } // row vector by scalar -> row vector operations ComplexRowVector operator + (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (add (v.data (), len, s), len); } ComplexRowVector operator - (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (subtract (v.data (), len, s), len); } ComplexRowVector operator * (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (multiply (v.data (), len, s), len); } ComplexRowVector operator / (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (divide (v.data (), len, s), len); } // scalar by row vector -> row vector operations ComplexRowVector operator + (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (add (a.data (), a_len, s), a_len); } ComplexRowVector operator - (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (subtract (s, a.data (), a_len), a_len); } ComplexRowVector operator * (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (multiply (a.data (), a_len, s), a_len); } ComplexRowVector operator / (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (divide (s, a.data (), a_len), a_len); } // row vector by column vector -> scalar Complex operator * (const ComplexRowVector& v, const ColumnVector& a) { ComplexColumnVector tmp (a); return v * tmp; } Complex operator * (const ComplexRowVector& v, const ComplexColumnVector& a) { // XXX FIXME XXX -- need function body assert (0); return Complex (); } // row vector by matrix -> row vector ComplexRowVector operator * (const ComplexRowVector& v, const ComplexMatrix& a) { int len = v.length (); if (a.rows () != len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return ComplexRowVector (); } if (len == 0 || a.cols () == 0) return ComplexRowVector (0); // Transpose A to form A'*x == (x'*A)' int a_nr = a.rows (); int a_nc = a.cols (); char trans = 'T'; int ld = a_nr; Complex alpha (1.0); Complex beta (0.0); int i_one = 1; Complex *y = new Complex [len]; F77_FCN (zgemv) (&trans, &a_nc, &a_nr, &alpha, a.data (), &ld, v.data (), &i_one, &beta, y, &i_one, 1L); return ComplexRowVector (y, len); } // row vector by row vector -> row vector operations ComplexRowVector operator + (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (v.data (), a.data (), len), len); } ComplexRowVector operator - (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (v.data (), a.data (), len), len); } ComplexRowVector product (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (v.data (), a.data (), len), len); } ComplexRowVector quotient (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (v.data (), a.data (), len), len); } // other operations ComplexRowVector map (c_c_Mapper f, const ComplexRowVector& a) { ComplexRowVector b (a); b.map (f); return b; } RowVector map (d_c_Mapper f, const ComplexRowVector& a) { int a_len = a.length (); RowVector b (a_len); for (int i = 0; i < a_len; i++) b.elem (i) = f (a.elem (i)); return b; } void ComplexRowVector::map (c_c_Mapper f) { for (int i = 0; i < length (); i++) elem (i) = f (elem (i)); } Complex ComplexRowVector::min (void) const { int len = length (); if (len == 0) return Complex (0.0); Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) < absres) { res = elem (i); absres = abs (res); } return res; } Complex ComplexRowVector::max (void) const { int len = length (); if (len == 0) return Complex (0.0); Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) > absres) { res = elem (i); absres = abs (res); } return res; } // i/o ostream& operator << (ostream& os, const ComplexRowVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.length (); i++) os << " " /* setw (field_width) */ << a.elem (i); return os; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */