Mercurial > hg > octave-lyh
view liboctave/RowVector.cc @ 231:9a6ecd8b50bc
[project @ 1993-11-16 10:37:07 by jwe]
author | jwe |
---|---|
date | Tue, 16 Nov 1993 10:37:07 +0000 |
parents | 1a48a1b91489 |
children | 780cbbc57b7c |
line wrap: on
line source
// RowVector manipulations. -*- C++ -*- /* Copyright (C) 1992, 1993 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ // I\'m not sure how this is supposed to work if the .h file declares // several classes, each of which is defined in a separate file... // // #ifdef __GNUG__ // #pragma implementation "Matrix.h" // #endif #include "Matrix.h" #include "mx-inlines.cc" #include "lo-error.h" #include "f77-uscore.h" // Fortran functions we call. extern "C" { int F77_FCN (dgemv) (const char*, const int*, const int*, const double*, const double*, const int*, const double*, const int*, const double*, double*, const int*, long); double F77_FCN (ddot) (const int*, const double*, const int*, const double*, const int*); /* * f2c translates complex*16 as * * typedef struct { doublereal re, im; } doublecomplex; * * and Complex.h from libg++ uses * * protected: * double re; * double im; * * as the only data members, so this should work (fingers crossed that * things don't change). */ int F77_FCN (zgemv) (const char*, const int*, const int*, const Complex*, const Complex*, const int*, const Complex*, const int*, const Complex*, Complex*, const int*, long); } /* * Row Vector class. */ RowVector::RowVector (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't create vector with negative dimension"); len = 0; data = (double *) NULL; return; } len = n; if (len > 0) data = new double [len]; else data = (double *) NULL; } RowVector::RowVector (int n, double val) { if (n < 0) { (*current_liboctave_error_handler) ("can't create vector with negative dimension"); len = 0; data = (double *) NULL; return; } len = n; if (len > 0) { data = new double [len]; copy (data, len, val); } else data = (double *) NULL; } RowVector::RowVector (const RowVector& a) { len = a.len; if (len > 0) { data = new double [len]; copy (data, a.data, len); } else data = (double *) NULL; } RowVector::RowVector (double a) { len = 1; data = new double [1]; data[0] = a; } RowVector& RowVector::operator = (const RowVector& a) { if (this != &a) { delete [] data; len = a.len; if (len > 0) { data = new double [len]; copy (data, a.data, len); } else data = (double *) NULL; } return *this; } double& RowVector::checkelem (int n) { #ifndef NO_RANGE_CHECK if (n < 0 || n >= len) { (*current_liboctave_error_handler) ("range error"); static double foo = 0.0; return foo; } #endif return elem (n); } double RowVector::checkelem (int n) const { #ifndef NO_RANGE_CHECK if (n < 0 || n >= len) { (*current_liboctave_error_handler) ("range error"); return 0.0; } #endif return elem (n); } RowVector& RowVector::resize (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimension"); return *this; } double *new_data = (double *) NULL; if (n > 0) { new_data = new double [n]; int min_len = len < n ? len : n; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; len = n; data = new_data; return *this; } RowVector& RowVector::resize (int n, double val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } int RowVector::operator == (const RowVector& a) const { if (len != a.len) return 0; return equal (data, a.data, len); } int RowVector::operator != (const RowVector& a) const { if (len != a.len) return 1; return !equal (data, a.data, len); } RowVector& RowVector::insert (const RowVector& a, int c) { if (c < 0 || c + a.len - 1 > len) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a.len; i++) data[c+i] = a.data[i]; return *this; } RowVector& RowVector::fill (double val) { if (len > 0) copy (data, len, val); return *this; } RowVector& RowVector::fill (double val, int c1, int c2) { if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) data[i] = val; return *this; } RowVector RowVector::append (const RowVector& a) const { int nc_insert = len; RowVector retval (len + a.len); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ColumnVector RowVector::transpose (void) const { return ColumnVector (dup (data, len), len); } RowVector RowVector::extract (int c1, int c2) const { if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_c = c2 - c1 + 1; RowVector result (new_c); for (int i = 0; i < new_c; i++) result.data[i] = elem (c1+i); return result; } // row vector by scalar -> row vector operations RowVector RowVector::operator + (double s) const { return RowVector (add (data, len, s), len); } RowVector RowVector::operator - (double s) const { return RowVector (subtract (data, len, s), len); } RowVector RowVector::operator * (double s) const { return RowVector (multiply (data, len, s), len); } RowVector RowVector::operator / (double s) const { return RowVector (divide (data, len, s), len); } ComplexRowVector RowVector::operator + (const Complex& s) const { return ComplexRowVector (add (data, len, s), len); } ComplexRowVector RowVector::operator - (const Complex& s) const { return ComplexRowVector (subtract (data, len, s), len); } ComplexRowVector RowVector::operator * (const Complex& s) const { return ComplexRowVector (multiply (data, len, s), len); } ComplexRowVector RowVector::operator / (const Complex& s) const { return ComplexRowVector (divide (data, len, s), len); } // scalar by row vector -> row vector operations RowVector operator + (double s, const RowVector& a) { return RowVector (add (a.data, a.len, s), a.len); } RowVector operator - (double s, const RowVector& a) { return RowVector (subtract (s, a.data, a.len), a.len); } RowVector operator * (double s, const RowVector& a) { return RowVector (multiply (a.data, a.len, s), a.len); } RowVector operator / (double s, const RowVector& a) { return RowVector (divide (s, a.data, a.len), a.len); } // row vector by column vector -> scalar double RowVector::operator * (const ColumnVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return 0.0; } int i_one = 1; return F77_FCN (ddot) (&len, data, &i_one, a.data, &i_one); } Complex RowVector::operator * (const ComplexColumnVector& a) const { ComplexRowVector tmp (*this); return tmp * a; } // row vector by matrix -> row vector RowVector RowVector::operator * (const Matrix& a) const { if (a.nr != len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return RowVector (); } if (len == 0 || a.nc == 0) return RowVector (0); // Transpose A to form A'*x == (x'*A)' int anr = a.nr; int anc = a.nc; char trans = 'T'; int ld = anr; double alpha = 1.0; double beta = 0.0; int i_one = 1; double *y = new double [len]; F77_FCN (dgemv) (&trans, &anc, &anr, &alpha, a.data, &ld, data, &i_one, &beta, y, &i_one, 1L); return RowVector (y, len); } ComplexRowVector RowVector::operator * (const ComplexMatrix& a) const { ComplexRowVector tmp (*this); return tmp * a; } // row vector by row vector -> row vector operations RowVector RowVector::operator + (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return RowVector (); } if (len == 0) return RowVector (0); return RowVector (add (data, a.data, len), len); } RowVector RowVector::operator - (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return RowVector (); } if (len == 0) return RowVector (0); return RowVector (subtract (data, a.data, len), len); } ComplexRowVector RowVector::operator + (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (data, a.data, len), len); } ComplexRowVector RowVector::operator - (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (data, a.data, len), len); } RowVector RowVector::product (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return RowVector (); } if (len == 0) return RowVector (0); return RowVector (multiply (data, a.data, len), len); } RowVector RowVector::quotient (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return RowVector (); } if (len == 0) return RowVector (0); return RowVector (divide (data, a.data, len), len); } ComplexRowVector RowVector::product (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (data, a.data, len), len); } ComplexRowVector RowVector::quotient (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (data, a.data, len), len); } RowVector& RowVector::operator += (const RowVector& a) { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; add2 (data, a.data, len); return *this; } RowVector& RowVector::operator -= (const RowVector& a) { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; subtract2 (data, a.data, len); return *this; } // unary operations RowVector RowVector::operator - (void) const { if (len == 0) return RowVector (0); return RowVector (negate (data, len), len); } RowVector map (d_d_Mapper f, const RowVector& a) { RowVector b (a); b.map (f); return b; } void RowVector::map (d_d_Mapper f) { for (int i = 0; i < len; i++) data[i] = f (data[i]); } double RowVector::min (void) const { if (len == 0) return 0; double res = data[0]; for (int i = 1; i < len; i++) if (data[i] < res) res = data[i]; return res; } double RowVector::max (void) const { if (len == 0) return 0; double res = data[0]; for (int i = 1; i < len; i++) if (data[i] > res) res = data[i]; return res; } ostream& operator << (ostream& os, const RowVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.len; i++) os << " " /* setw (field_width) */ << a.data[i]; return os; } /* * Complex Row Vector class */ ComplexRowVector::ComplexRowVector (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't create vector with negative dimension"); len = 0; data = (Complex *) NULL; return; } len = n; if (len > 0) data = new Complex [len]; else data = (Complex *) NULL; } ComplexRowVector::ComplexRowVector (int n, double val) { if (n < 0) { (*current_liboctave_error_handler) ("can't create vector with negative dimension"); len = 0; data = (Complex *) NULL; return; } len = n; if (len > 0) { data = new Complex [len]; copy (data, len, val); } else data = (Complex *) NULL; } ComplexRowVector::ComplexRowVector (int n, const Complex& val) { if (n < 0) { (*current_liboctave_error_handler) ("can't create vector with negative dimension"); len = 0; data = (Complex *) NULL; return; } len = n; if (len > 0) { data = new Complex [len]; copy (data, len, val); } else data = (Complex *) NULL; } ComplexRowVector::ComplexRowVector (const RowVector& a) { len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; } ComplexRowVector::ComplexRowVector (const ComplexRowVector& a) { len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; } ComplexRowVector::ComplexRowVector (double a) { len = 1; data = new Complex [1]; data[0] = a; } ComplexRowVector::ComplexRowVector (const Complex& a) { len = 1; data = new Complex [1]; data[0] = Complex (a); } ComplexRowVector& ComplexRowVector::operator = (const RowVector& a) { delete [] data; len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; return *this; } ComplexRowVector& ComplexRowVector::operator = (const ComplexRowVector& a) { if (this != &a) { delete [] data; len = a.len; if (len > 0) { data = new Complex [len]; copy (data, a.data, len); } else data = (Complex *) NULL; } return *this; } Complex& ComplexRowVector::checkelem (int n) { #ifndef NO_RANGE_CHECK if (n < 0 || n >= len) { (*current_liboctave_error_handler) ("range error"); static Complex foo (0.0); return foo; } #endif return elem (n); } Complex ComplexRowVector::checkelem (int n) const { #ifndef NO_RANGE_CHECK if (n < 0 || n >= len) { (*current_liboctave_error_handler) ("range error"); return Complex (0.0); } #endif return elem (n); } ComplexRowVector& ComplexRowVector::resize (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimension"); return *this; } Complex *new_data = (Complex *) NULL; if (n > 0) { new_data = new Complex [n]; int min_len = len < n ? len : n; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; len = n; data = new_data; return *this; } ComplexRowVector& ComplexRowVector::resize (int n, double val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } ComplexRowVector& ComplexRowVector::resize (int n, const Complex& val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } int ComplexRowVector::operator == (const ComplexRowVector& a) const { if (len != a.len) return 0; return equal (data, a.data, len); } int ComplexRowVector::operator != (const ComplexRowVector& a) const { if (len != a.len) return 1; return !equal (data, a.data, len); } // destructive insert/delete/reorder operations ComplexRowVector& ComplexRowVector::insert (const RowVector& a, int c) { if (c < 0 || c + a.len - 1 > len) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a.len; i++) data[c+i] = a.data[i]; return *this; } ComplexRowVector& ComplexRowVector::insert (const ComplexRowVector& a, int c) { if (c < 0 || c + a.len - 1 > len) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a.len; i++) data[c+i] = a.data[i]; return *this; } ComplexRowVector& ComplexRowVector::fill (double val) { if (len > 0) copy (data, len, val); return *this; } ComplexRowVector& ComplexRowVector::fill (const Complex& val) { if (len > 0) copy (data, len, val); return *this; } ComplexRowVector& ComplexRowVector::fill (double val, int c1, int c2) { if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) data[i] = val; return *this; } ComplexRowVector& ComplexRowVector::fill (const Complex& val, int c1, int c2) { if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) data[i] = val; return *this; } ComplexRowVector ComplexRowVector::append (const RowVector& a) const { int nc_insert = len; ComplexRowVector retval (len + a.len); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ComplexRowVector ComplexRowVector::append (const ComplexRowVector& a) const { int nc_insert = len; ComplexRowVector retval (len + a.len); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ComplexColumnVector ComplexRowVector::hermitian (void) const { return ComplexColumnVector (conj_dup (data, len), len); } ComplexColumnVector ComplexRowVector::transpose (void) const { return ComplexColumnVector (dup (data, len), len); } RowVector real (const ComplexRowVector& a) { RowVector retval; if (a.len > 0) retval = RowVector (real_dup (a.data, a.len), a.len); return retval; } RowVector imag (const ComplexRowVector& a) { RowVector retval; if (a.len > 0) retval = RowVector (imag_dup (a.data, a.len), a.len); return retval; } ComplexRowVector conj (const ComplexRowVector& a) { ComplexRowVector retval; if (a.len > 0) retval = ComplexRowVector (conj_dup (a.data, a.len), a.len); return retval; } // resize is the destructive equivalent for this one ComplexRowVector ComplexRowVector::extract (int c1, int c2) const { if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_c = c2 - c1 + 1; ComplexRowVector result (new_c); for (int i = 0; i < new_c; i++) result.data[i] = elem (c1+i); return result; } // row vector by scalar -> row vector operations ComplexRowVector ComplexRowVector::operator + (double s) const { return ComplexRowVector (add (data, len, s), len); } ComplexRowVector ComplexRowVector::operator - (double s) const { return ComplexRowVector (subtract (data, len, s), len); } ComplexRowVector ComplexRowVector::operator * (double s) const { return ComplexRowVector (multiply (data, len, s), len); } ComplexRowVector ComplexRowVector::operator / (double s) const { return ComplexRowVector (divide (data, len, s), len); } ComplexRowVector ComplexRowVector::operator + (const Complex& s) const { return ComplexRowVector (add (data, len, s), len); } ComplexRowVector ComplexRowVector::operator - (const Complex& s) const { return ComplexRowVector (subtract (data, len, s), len); } ComplexRowVector ComplexRowVector::operator * (const Complex& s) const { return ComplexRowVector (multiply (data, len, s), len); } ComplexRowVector ComplexRowVector::operator / (const Complex& s) const { return ComplexRowVector (divide (data, len, s), len); } // scalar by row vector -> row vector operations ComplexRowVector operator + (double s, const ComplexRowVector& a) { return ComplexRowVector (add (a.data, a.len, s), a.len); } ComplexRowVector operator - (double s, const ComplexRowVector& a) { return ComplexRowVector (subtract (s, a.data, a.len), a.len); } ComplexRowVector operator * (double s, const ComplexRowVector& a) { return ComplexRowVector (multiply (a.data, a.len, s), a.len); } ComplexRowVector operator / (double s, const ComplexRowVector& a) { return ComplexRowVector (divide (s, a.data, a.len), a.len); } ComplexRowVector operator + (const Complex& s, const ComplexRowVector& a) { return ComplexRowVector (add (a.data, a.len, s), a.len); } ComplexRowVector operator - (const Complex& s, const ComplexRowVector& a) { return ComplexRowVector (subtract (s, a.data, a.len), a.len); } ComplexRowVector operator * (const Complex& s, const ComplexRowVector& a) { return ComplexRowVector (multiply (a.data, a.len, s), a.len); } ComplexRowVector operator / (const Complex& s, const ComplexRowVector& a) { return ComplexRowVector (divide (s, a.data, a.len), a.len); } // row vector by column vector -> scalar Complex ComplexRowVector::operator * (const ColumnVector& a) const { ComplexColumnVector tmp (a); return *this * tmp; } Complex ComplexRowVector::operator * (const ComplexColumnVector& a) const { // XXX FIXME XXX -- need function body assert (0); return Complex (0.0, 0.0); } // row vector by matrix -> row vector ComplexRowVector ComplexRowVector::operator * (const Matrix& a) const { ComplexMatrix tmp (a); return *this * tmp; } ComplexRowVector ComplexRowVector::operator * (const ComplexMatrix& a) const { if (a.nr != len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return ComplexRowVector (); } if (len == 0 || a.nc == 0) return ComplexRowVector (0); // Transpose A to form A'*x == (x'*A)' int anr = a.nr; int anc = a.nc; char trans = 'T'; int ld = anr; Complex alpha (1.0); Complex beta (0.0); int i_one = 1; Complex *y = new Complex [len]; F77_FCN (zgemv) (&trans, &anc, &anr, &alpha, a.data, &ld, data, &i_one, &beta, y, &i_one, 1L); return ComplexRowVector (y, len); } // row vector by row vector -> row vector operations ComplexRowVector ComplexRowVector::operator + (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (data, a.data, len), len); } ComplexRowVector ComplexRowVector::operator - (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (data, a.data, len), len); } ComplexRowVector ComplexRowVector::operator + (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (data, a.data, len), len); } ComplexRowVector ComplexRowVector::operator - (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (data, a.data, len), len); } ComplexRowVector ComplexRowVector::product (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (data, a.data, len), len); } ComplexRowVector ComplexRowVector::quotient (const RowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (data, a.data, len), len); } ComplexRowVector ComplexRowVector::product (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (data, a.data, len), len); } ComplexRowVector ComplexRowVector::quotient (const ComplexRowVector& a) const { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (data, a.data, len), len); } ComplexRowVector& ComplexRowVector::operator += (const RowVector& a) { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; add2 (data, a.data, len); return *this; } ComplexRowVector& ComplexRowVector::operator -= (const RowVector& a) { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; subtract2 (data, a.data, len); return *this; } ComplexRowVector& ComplexRowVector::operator += (const ComplexRowVector& a) { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; add2 (data, a.data, len); return *this; } ComplexRowVector& ComplexRowVector::operator -= (const ComplexRowVector& a) { if (len != a.len) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; subtract2 (data, a.data, len); return *this; } // unary operations ComplexRowVector ComplexRowVector::operator - (void) const { if (len == 0) return ComplexRowVector (0); return ComplexRowVector (negate (data, len), len); } ComplexRowVector map (c_c_Mapper f, const ComplexRowVector& a) { ComplexRowVector b (a); b.map (f); return b; } RowVector map (d_c_Mapper f, const ComplexRowVector& a) { RowVector b (a.len); for (int i = 0; i < a.len; i++) b.elem (i) = f (a.elem (i)); return b; } void ComplexRowVector::map (c_c_Mapper f) { for (int i = 0; i < len; i++) data[i] = f (data[i]); } Complex ComplexRowVector::min (void) const { if (len == 0) return Complex (0.0); Complex res = data[0]; double absres = abs (res); for (int i = 1; i < len; i++) if (abs (data[i]) < absres) { res = data[i]; absres = abs (res); } return res; } Complex ComplexRowVector::max (void) const { if (len == 0) return Complex (0.0); Complex res = data[0]; double absres = abs (res); for (int i = 1; i < len; i++) if (abs (data[i]) > absres) { res = data[i]; absres = abs (res); } return res; } // i/o ostream& operator << (ostream& os, const ComplexRowVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.len; i++) os << " " /* setw (field_width) */ << a.data[i]; return os; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */