Mercurial > hg > octave-lyh
view scripts/plot/hist.m @ 17500:be7e8b91c6b1
hist.m: Overhaul function.
* scripts/plot/hist.m: Rephrase some of docstring. Put input validation first.
Use variable names in error messages. Use meaningful variable name 'xsort'
rather than 'tmp'. Use in-place operators for performance.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 25 Sep 2013 11:34:53 -0700 |
parents | 1e2641277b2a |
children |
line wrap: on
line source
## Copyright (C) 1994-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} hist (@var{y}) ## @deftypefnx {Function File} {} hist (@var{y}, @var{x}) ## @deftypefnx {Function File} {} hist (@var{y}, @var{nbins}) ## @deftypefnx {Function File} {} hist (@var{y}, @var{x}, @var{norm}) ## @deftypefnx {Function File} {} hist (@dots{}, @var{prop}, @var{val}, @dots{}) ## @deftypefnx {Function File} {} hist (@var{hax}, @dots{}) ## @deftypefnx {Function File} {[@var{nn}, @var{xx}] =} hist (@dots{}) ## Produce histogram counts or plots. ## ## With one vector input argument, @var{y}, plot a histogram of the values ## with 10 bins. The range of the histogram bins is determined by the ## range of the data. With one matrix input argument, @var{y}, plot a ## histogram where each bin contains a bar per input column. ## ## Given a second vector argument, @var{x}, use that as the centers of ## the bins, with the width of the bins determined from the adjacent ## values in the vector. ## ## If scalar, the second argument, @var{nbins}, defines the number of bins. ## ## If a third argument is provided, the histogram is normalized such that ## the sum of the bars is equal to @var{norm}. ## ## Extreme values are lumped into the first and last bins. ## ## The histogram's appearance may be modified by specifying property/value ## pairs. For example the face and edge color may be modified. ## ## @example ## @group ## hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b"); ## @end group ## @end example ## ## @noindent ## The histogram's colors also depend upon the current colormap. ## ## @example ## @group ## hist (rand (10, 3)); ## colormap (summer ()); ## @end group ## @end example ## ## If the first argument @var{hax} is an axes handle, then plot into this axis, ## rather than the current axes returned by @code{gca}. ## ## With two output arguments, produce the values @var{nn} (numbers of elements) ## and @var{xx} (bin centers) such that @code{bar (@var{xx}, @var{nn})} will ## plot the histogram. ## ## @seealso{histc, bar, pie, rose} ## @end deftypefn ## Author: jwe function [nn, xx] = hist (varargin) [hax, varargin, nargin] = __plt_get_axis_arg__ ("hist", varargin{:}); if (nargin < 1) print_usage (); endif y = varargin{1}; varargin = varargin(2:end); arg_is_vector = isvector (y); if (arg_is_vector) y = y(:); endif if (! isreal (y)) error ("hist: Y must be real valued"); endif max_val = max (y(:)); min_val = min (y(:)); iarg = 1; if (nargin == 1 || ischar (varargin{iarg})) n = 10; x = [0.5:n]'/n; x = x * (max_val - min_val) + ones (size (x)) * min_val; else ## nargin is either 2 or 3 x = varargin{iarg++}; if (isscalar (x)) n = x; if (n <= 0) error ("hist: number of bins NBINS must be positive"); endif x = [0.5:n]'/n; x = x * (max_val - min_val) + ones (size (x)) * min_val; elseif (isreal (x)) if (isvector (x)) x = x(:); endif xsort = sort (x); if (any (xsort != x)) warning ("hist: bin values not sorted on input"); x = xsort; endif else error ("hist: second argument must be a scalar or a vector"); endif endif ## Avoid issues with integer types for x and y x = double (x); y = double (y); cutoff = (x(1:end-1,:) + x(2:end,:)) / 2; n = rows (x); y_nc = columns (y); if (n < 30 && columns (x) == 1) ## The following algorithm works fastest for n less than about 30. chist = zeros (n+1, y_nc); for i = 1:n-1 chist(i+1,:) = sum (y <= cutoff(i)); endfor chist(n+1,:) = sum (! isnan (y)); else ## The following algorithm works fastest for n greater than about 30. ## Put cutoff elements between boundaries, integrate over all ## elements, keep totals at boundaries. [s, idx] = sort ([y; repmat(cutoff, 1, y_nc)]); len = rows (y); chist = cumsum (idx <= len); chist = [(zeros (1, y_nc)); (reshape (chist(idx > len), rows (cutoff), y_nc)); (chist(end,:) - sum (isnan (y)))]; endif freq = diff (chist); if (nargin > 2 && ! ischar (varargin{iarg})) ## Normalize the histogram. norm = varargin{iarg++}; freq *= norm / sum (! isnan (y)); endif if (nargout > 0) if (arg_is_vector) ## Matlab compatibility requires a row vector return nn = freq'; xx = x'; else nn = freq; xx = x; endif else if (isempty (hax)) hax = gca (); endif if (columns (freq) != 1) bar (hax, x, freq, 0.8, varargin{iarg:end}); else bar (hax, x, freq, 1.0, varargin{iarg:end}); endif endif endfunction %!test %! [nn,xx] = hist ([1:4], 3); %! assert (xx, [1.5,2.5,3.5]); %! assert (nn, [2,1,1]); %!test %! [nn,xx] = hist ([1:4]', 3); %! assert (xx, [1.5,2.5,3.5]); %! assert (nn, [2,1,1]); %!test %! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3],[1 2 3]); %! assert (xx, [1,2,3]); %! assert (nn, [3,2,1]); %!test %! [nn,xx] = hist ([1 1 1 NaN NaN NaN 2 2 3],[1 2 3], 6); %! assert (xx, [1,2,3]); %! assert (nn, [3,2,1]); %!test %! [nn,xx] = hist ([[1:4]', [1:4]'], 3); %! assert (xx, [1.5;2.5;3.5]); %! assert (nn, [[2,1,1]',[2,1,1]']); %!test %! for n = [10, 30, 100, 1000] %! assert (sum (hist ([1:n], n)), n); %! assert (sum (hist ([1:n], [2:n-1])), n); %! assert (sum (hist ([1:n], [1:n])), n); %! assert (sum (hist ([1:n], 29)), n); %! assert (sum (hist ([1:n], 30)), n); %! endfor %!assert (hist (1,1), 1) %!assert (size (hist (randn (750,240), 200)), [200,240])