Mercurial > hg > octave-lyh
view libinterp/corefcn/balance.cc @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | bc924baa2c4e |
children |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2008-2009 Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // Author: A. S. Hodel <scotte@eng.auburn.edu> #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <string> #include "CmplxAEPBAL.h" #include "fCmplxAEPBAL.h" #include "dbleAEPBAL.h" #include "floatAEPBAL.h" #include "CmplxGEPBAL.h" #include "fCmplxGEPBAL.h" #include "dbleGEPBAL.h" #include "floatGEPBAL.h" #include "quit.h" #include "defun.h" #include "error.h" #include "f77-fcn.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (balance, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{AA} =} balance (@var{A})\n\ @deftypefnx {Built-in Function} {@var{AA} =} balance (@var{A}, @var{opt})\n\ @deftypefnx {Built-in Function} {[@var{DD}, @var{AA}] =} balance (@var{A}, @var{opt})\n\ @deftypefnx {Built-in Function} {[@var{D}, @var{P}, @var{AA}] =} balance (@var{A}, @var{opt})\n\ @deftypefnx {Built-in Function} {[@var{CC}, @var{DD}, @var{AA}, @var{BB}] =} balance (@var{A}, @var{B}, @var{opt})\n\ \n\ Compute @code{@var{AA} = @var{DD} \\ @var{A} * @var{DD}} in which @var{AA}\n\ is a matrix whose row and column norms are roughly equal in magnitude, and\n\ @code{@var{DD} = @var{P} * @var{D}}, in which @var{P} is a permutation\n\ matrix and @var{D} is a diagonal matrix of powers of two. This allows the\n\ equilibration to be computed without round-off. Results of eigenvalue\n\ calculation are typically improved by balancing first.\n\ \n\ If two output values are requested, @code{balance} returns\n\ the diagonal @var{D} and the permutation @var{P} separately as vectors.\n\ In this case, @code{@var{DD} = eye(n)(:,@var{P}) * diag (@var{D})}, where\n\ @math{n} is the matrix size.\n\ \n\ If four output values are requested, compute @code{@var{AA} =\n\ @var{CC}*@var{A}*@var{DD}} and @code{@var{BB} = @var{CC}*@var{B}*@var{DD}},\n\ in which @var{AA} and @var{BB} have non-zero elements of approximately the\n\ same magnitude and @var{CC} and @var{DD} are permuted diagonal matrices as\n\ in @var{DD} for the algebraic eigenvalue problem.\n\ \n\ The eigenvalue balancing option @var{opt} may be one of:\n\ \n\ @table @asis\n\ @item @qcode{\"noperm\"}, @qcode{\"S\"}\n\ Scale only; do not permute.\n\ \n\ @item @qcode{\"noscal\"}, @qcode{\"P\"}\n\ Permute only; do not scale.\n\ @end table\n\ \n\ Algebraic eigenvalue balancing uses standard @sc{lapack} routines.\n\ \n\ Generalized eigenvalue problem balancing uses Ward's algorithm\n\ (SIAM Journal on Scientific and Statistical Computing, 1981).\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin < 1 || nargin > 3 || nargout < 0 || nargout > 4) { print_usage (); return retval; } // determine if it's AEP or GEP bool AEPcase = nargin == 1 || args(1).is_string (); // problem dimension octave_idx_type nn = args(0).rows (); if (nn != args(0).columns ()) { gripe_square_matrix_required ("balance"); return retval; } bool isfloat = args(0).is_single_type () || (! AEPcase && args(1).is_single_type ()); bool complex_case = (args(0).is_complex_type () || (! AEPcase && args(1).is_complex_type ())); // Extract argument 1 parameter for both AEP and GEP. Matrix aa; ComplexMatrix caa; FloatMatrix faa; FloatComplexMatrix fcaa; if (isfloat) { if (complex_case) fcaa = args(0).float_complex_matrix_value (); else faa = args(0).float_matrix_value (); } else { if (complex_case) caa = args(0).complex_matrix_value (); else aa = args(0).matrix_value (); } if (error_state) return retval; // Treat AEP/GEP cases. if (AEPcase) { // Algebraic eigenvalue problem. bool noperm = false, noscal = false; if (nargin > 1) { std::string a1s = args(1).string_value (); noperm = a1s == "noperm" || a1s == "S"; noscal = a1s == "noscal" || a1s == "P"; } // balance the AEP if (isfloat) { if (complex_case) { FloatComplexAEPBALANCE result (fcaa, noperm, noscal); if (nargout == 0 || nargout == 1) retval(0) = result.balanced_matrix (); else if (nargout == 2) { retval(1) = result.balanced_matrix (); retval(0) = result.balancing_matrix (); } else { retval(2) = result.balanced_matrix (); retval(1) = result.permuting_vector (); retval(0) = result.scaling_vector (); } } else { FloatAEPBALANCE result (faa, noperm, noscal); if (nargout == 0 || nargout == 1) retval(0) = result.balanced_matrix (); else if (nargout == 2) { retval(1) = result.balanced_matrix (); retval(0) = result.balancing_matrix (); } else { retval(2) = result.balanced_matrix (); retval(1) = result.permuting_vector (); retval(0) = result.scaling_vector (); } } } else { if (complex_case) { ComplexAEPBALANCE result (caa, noperm, noscal); if (nargout == 0 || nargout == 1) retval(0) = result.balanced_matrix (); else if (nargout == 2) { retval(1) = result.balanced_matrix (); retval(0) = result.balancing_matrix (); } else { retval(2) = result.balanced_matrix (); retval(1) = result.permuting_vector (); retval(0) = result.scaling_vector (); } } else { AEPBALANCE result (aa, noperm, noscal); if (nargout == 0 || nargout == 1) retval(0) = result.balanced_matrix (); else if (nargout == 2) { retval(1) = result.balanced_matrix (); retval(0) = result.balancing_matrix (); } else { retval(2) = result.balanced_matrix (); retval(1) = result.permuting_vector (); retval(0) = result.scaling_vector (); } } } } else { std::string bal_job; if (nargout == 1) warning ("balance: used GEP, should have two output arguments"); // Generalized eigenvalue problem. if (nargin == 2) bal_job = "B"; else if (args(2).is_string ()) bal_job = args(2).string_value (); else { error ("balance: OPT argument must be a string"); return retval; } if ((nn != args(1).columns ()) || (nn != args(1).rows ())) { gripe_nonconformant (); return retval; } Matrix bb; ComplexMatrix cbb; FloatMatrix fbb; FloatComplexMatrix fcbb; if (isfloat) { if (complex_case) fcbb = args(1).float_complex_matrix_value (); else fbb = args(1).float_matrix_value (); } else { if (complex_case) cbb = args(1).complex_matrix_value (); else bb = args(1).matrix_value (); } // balance the GEP if (isfloat) { if (complex_case) { FloatComplexGEPBALANCE result (fcaa, fcbb, bal_job); switch (nargout) { case 4: retval(3) = result.balanced_matrix2 (); // fall through case 3: retval(2) = result.balanced_matrix (); retval(1) = result.balancing_matrix2 (); retval(0) = result.balancing_matrix (); break; case 2: retval(1) = result.balancing_matrix2 (); // fall through case 1: retval(0) = result.balancing_matrix (); break; default: error ("balance: invalid number of output arguments"); break; } } else { FloatGEPBALANCE result (faa, fbb, bal_job); switch (nargout) { case 4: retval(3) = result.balanced_matrix2 (); // fall through case 3: retval(2) = result.balanced_matrix (); retval(1) = result.balancing_matrix2 (); retval(0) = result.balancing_matrix (); break; case 2: retval(1) = result.balancing_matrix2 (); // fall through case 1: retval(0) = result.balancing_matrix (); break; default: error ("balance: invalid number of output arguments"); break; } } } else { if (complex_case) { ComplexGEPBALANCE result (caa, cbb, bal_job); switch (nargout) { case 4: retval(3) = result.balanced_matrix2 (); // fall through case 3: retval(2) = result.balanced_matrix (); retval(1) = result.balancing_matrix2 (); retval(0) = result.balancing_matrix (); break; case 2: retval(1) = result.balancing_matrix2 (); // fall through case 1: retval(0) = result.balancing_matrix (); break; default: error ("balance: invalid number of output arguments"); break; } } else { GEPBALANCE result (aa, bb, bal_job); switch (nargout) { case 4: retval(3) = result.balanced_matrix2 (); // fall through case 3: retval(2) = result.balanced_matrix (); retval(1) = result.balancing_matrix2 (); retval(0) = result.balancing_matrix (); break; case 2: retval(1) = result.balancing_matrix2 (); // fall through case 1: retval(0) = result.balancing_matrix (); break; default: error ("balance: invalid number of output arguments"); break; } } } } return retval; }