Mercurial > hg > octave-lyh
view libinterp/corefcn/fft2.cc @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | 2fc554ffbc28 |
children |
line wrap: on
line source
/* Copyright (C) 1997-2012 David Bateman Copyright (C) 1996-1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-mappers.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" // This function should be merged with Fifft. #if defined (HAVE_FFTW) #define FFTSRC "@sc{fftw}" #else #define FFTSRC "@sc{fftpack}" #endif static octave_value do_fft2 (const octave_value_list &args, const char *fcn, int type) { octave_value retval; int nargin = args.length (); if (nargin < 1 || nargin > 3) { print_usage (); return retval; } octave_value arg = args(0); dim_vector dims = arg.dims (); octave_idx_type n_rows = -1; if (nargin > 1) { double dval = args(1).double_value (); if (xisnan (dval)) error ("%s: number of rows (N) cannot be NaN", fcn); else { n_rows = NINTbig (dval); if (n_rows < 0) error ("%s: number of rows (N) must be greater than zero", fcn); } } if (error_state) return retval; octave_idx_type n_cols = -1; if (nargin > 2) { double dval = args(2).double_value (); if (xisnan (dval)) error ("%s: number of columns (M) cannot be NaN", fcn); else { n_cols = NINTbig (dval); if (n_cols < 0) error ("%s: number of columns (M) must be greater than zero", fcn); } } if (error_state) return retval; for (int i = 0; i < dims.length (); i++) if (dims(i) < 0) return retval; if (n_rows < 0) n_rows = dims (0); else dims (0) = n_rows; if (n_cols < 0) n_cols = dims (1); else dims (1) = n_cols; if (dims.all_zero () || n_rows == 0 || n_cols == 0) { if (arg.is_single_type ()) return octave_value (FloatMatrix ()); else return octave_value (Matrix ()); } if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatNDArray nda = arg.float_array_value (); if (! error_state) { nda.resize (dims, 0.0); retval = (type != 0 ? nda.ifourier2d () : nda.fourier2d ()); } } else { FloatComplexNDArray cnda = arg.float_complex_array_value (); if (! error_state) { cnda.resize (dims, 0.0); retval = (type != 0 ? cnda.ifourier2d () : cnda.fourier2d ()); } } } else { if (arg.is_real_type ()) { NDArray nda = arg.array_value (); if (! error_state) { nda.resize (dims, 0.0); retval = (type != 0 ? nda.ifourier2d () : nda.fourier2d ()); } } else if (arg.is_complex_type ()) { ComplexNDArray cnda = arg.complex_array_value (); if (! error_state) { cnda.resize (dims, 0.0); retval = (type != 0 ? cnda.ifourier2d () : cnda.fourier2d ()); } } else { gripe_wrong_type_arg (fcn, arg); } } return retval; } DEFUN (fft2, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} fft2 (@var{A})\n\ @deftypefnx {Built-in Function} {} fft2 (@var{A}, @var{m}, @var{n})\n\ Compute the two-dimensional discrete Fourier transform of @var{A} using\n\ a Fast Fourier Transform (FFT) algorithm.\n\ \n\ The optional arguments @var{m} and @var{n} may be used specify the\n\ number of rows and columns of @var{A} to use. If either of these is\n\ larger than the size of @var{A}, @var{A} is resized and padded with\n\ zeros.\n\ \n\ If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix\n\ of @var{A} is treated separately.\n\ @seealso {ifft2, fft, fftn, fftw}\n\ @end deftypefn") { return do_fft2 (args, "fft2", 0); } DEFUN (ifft2, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} ifft2 (@var{A})\n\ @deftypefnx {Built-in Function} {} ifft2 (@var{A}, @var{m}, @var{n})\n\ Compute the inverse two-dimensional discrete Fourier transform of @var{A}\n\ using a Fast Fourier Transform (FFT) algorithm.\n\ \n\ The optional arguments @var{m} and @var{n} may be used specify the\n\ number of rows and columns of @var{A} to use. If either of these is\n\ larger than the size of @var{A}, @var{A} is resized and padded with\n\ zeros.\n\ \n\ If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix\n\ of @var{A} is treated separately\n\ @seealso {fft2, ifft, ifftn, fftw}\n\ @end deftypefn") { return do_fft2 (args, "ifft2", 1); } /* %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! M = 16; %! N = 8; %! %! m = 5; %! n = 3; %! %! x = 2*pi*(0:1:M-1)/M; %! y = 2*pi*(0:1:N-1)/N; %! sx = cos (m*x); %! sy = sin (n*y); %! s = kron (sx',sy); %! S = fft2 (s); %! answer = kron (fft (sx)', fft (sy)); %! assert (S, answer, 4*M*N*eps); %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! M = 12; %! N = 7; %! %! m = 3; %! n = 2; %! %! x = 2*pi*(0:1:M-1)/M; %! y = 2*pi*(0:1:N-1)/N; %! %! sx = cos (m*x); %! sy = cos (n*y); %! %! S = kron (fft (sx)', fft (sy)); %! answer = kron (sx', sy); %! s = ifft2 (S); %! %! assert (s, answer, 30*eps); %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! M = 16; %! N = 8; %! %! m = 5; %! n = 3; %! %! x = 2*pi*(0:1:M-1)/M; %! y = 2*pi*(0:1:N-1)/N; %! sx = single (cos (m*x)); %! sy = single (sin (n*y)); %! s = kron (sx', sy); %! S = fft2 (s); %! answer = kron (fft (sx)', fft (sy)); %! assert (S, answer, 4*M*N*eps ("single")); %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! M = 12; %! N = 7; %! %! m = 3; %! n = 2; %! %! x = single (2*pi*(0:1:M-1)/M); %! y = single (2*pi*(0:1:N-1)/N); %! %! sx = cos (m*x); %! sy = cos (n*y); %! %! S = kron (fft (sx)', fft (sy)); %! answer = kron (sx', sy); %! s = ifft2 (S); %! %! assert (s, answer, 30*eps ("single")); */