Mercurial > hg > octave-lyh
view libinterp/corefcn/max.cc @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | db8b90a56298 |
children |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-ieee.h" #include "lo-mappers.h" #include "lo-math.h" #include "dNDArray.h" #include "CNDArray.h" #include "quit.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "ov-cx-mat.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" template <class ArrayType> static octave_value_list do_minmax_red_op (const octave_value& arg, int nargout, int dim, bool ismin) { octave_value_list retval; ArrayType array = octave_value_extract<ArrayType> (arg); if (error_state) return retval; if (nargout == 2) { retval.resize (2); Array<octave_idx_type> idx; if (ismin) retval(0) = array.min (idx, dim); else retval(0) = array.max (idx, dim); retval(1) = octave_value (idx, true, true); } else { if (ismin) retval(0) = array.min (dim); else retval(0) = array.max (dim); } return retval; } // Matlab returns double arrays for min/max operations on character // arrays, so we specialize here to get that behavior. Other possible // solutions are to convert the argument to double here and call the // code for double, but that could waste memory, or to have the // underlying charNDArray::min/max functions return NDArray instead of // charNDArray, but that is inconsistent with the way other min/max // functions work. template <> octave_value_list do_minmax_red_op<charNDArray> (const octave_value& arg, int nargout, int dim, bool ismin) { octave_value_list retval; charNDArray array = octave_value_extract<charNDArray> (arg); if (error_state) return retval; if (nargout == 2) { retval.resize (2); Array<octave_idx_type> idx; if (ismin) retval(0) = NDArray (array.min (idx, dim)); else retval(0) = NDArray (array.max (idx, dim)); retval(1) = octave_value (idx, true, true); } else { if (ismin) retval(0) = NDArray (array.min (dim)); else retval(0) = NDArray (array.max (dim)); } return retval; } // Specialization for bool arrays. template <> octave_value_list do_minmax_red_op<boolNDArray> (const octave_value& arg, int nargout, int dim, bool ismin) { octave_value_list retval; if (nargout <= 1) { // This case can be handled using any/all. boolNDArray array = arg.bool_array_value (); if (array.is_empty ()) retval(0) = array; else if (ismin) retval(0) = array.all (dim); else retval(0) = array.any (dim); } else { // any/all don't have indexed versions, so do it via a conversion. retval = do_minmax_red_op<int8NDArray> (arg, nargout, dim, ismin); if (! error_state) retval(0) = retval(0).bool_array_value (); } return retval; } template <class ArrayType> static octave_value do_minmax_bin_op (const octave_value& argx, const octave_value& argy, bool ismin) { typedef typename ArrayType::element_type ScalarType; octave_value retval; if (argx.is_scalar_type () == 1) { ScalarType x = octave_value_extract<ScalarType> (argx); ArrayType y = octave_value_extract<ArrayType> (argy); if (error_state) ; else if (ismin) retval = min (x, y); else retval = max (x, y); } else if (argy.is_scalar_type () == 1) { ArrayType x = octave_value_extract<ArrayType> (argx); ScalarType y = octave_value_extract<ScalarType> (argy); if (error_state) ; else if (ismin) retval = min (x, y); else retval = max (x, y); } else { ArrayType x = octave_value_extract<ArrayType> (argx); ArrayType y = octave_value_extract<ArrayType> (argy); if (error_state) ; else if (ismin) retval = min (x, y); else retval = max (x, y); } return retval; } // Matlab returns double arrays for min/max operations on character // arrays, so we specialize here to get that behavior. Other possible // solutions are to convert the arguments to double here and call the // code for double, but that could waste a lot of memory, or to have the // underlying charNDArray::min/max functions return NDArray instead of // charNDArray, but that is inconsistent with the way other min/max // functions work. template <> octave_value do_minmax_bin_op<charNDArray> (const octave_value& argx, const octave_value& argy, bool ismin) { octave_value retval; if (argx.is_scalar_type () == 1) { char x = octave_value_extract<char> (argx); charNDArray y = octave_value_extract<charNDArray> (argy); if (error_state) ; else if (ismin) retval = NDArray (min (x, y)); else retval = NDArray (max (x, y)); } else if (argy.is_scalar_type () == 1) { charNDArray x = octave_value_extract<charNDArray> (argx); char y = octave_value_extract<char> (argy); if (error_state) ; else if (ismin) retval = NDArray (min (x, y)); else retval = NDArray (max (x, y)); } else { charNDArray x = octave_value_extract<charNDArray> (argx); charNDArray y = octave_value_extract<charNDArray> (argy); if (error_state) ; else if (ismin) retval = NDArray (min (x, y)); else retval = NDArray (max (x, y)); } return retval; } static octave_value_list do_minmax_body (const octave_value_list& args, int nargout, bool ismin) { octave_value_list retval; const char *func = ismin ? "min" : "max"; int nargin = args.length (); if (nargin == 3 || nargin == 1) { octave_value arg = args(0); int dim = -1; if (nargin == 3) { dim = args(2).int_value (true) - 1; if (error_state || dim < 0) { error ("%s: DIM must be a valid dimension", func); return retval; } if (! args(1).is_empty ()) warning ("%s: second argument is ignored", func); } switch (arg.builtin_type ()) { case btyp_double: { if (arg.is_range () && (dim == -1 || dim == 1)) { Range range = arg.range_value (); if (range.nelem () == 0) { retval(0) = arg; if (nargout > 1) retval(1) = arg; } else if (ismin) { retval(0) = range.min (); if (nargout > 1) retval(1) = static_cast<double> (range.inc () < 0 ? range.nelem () : 1); } else { retval(0) = range.max (); if (nargout > 1) retval(1) = static_cast<double> (range.inc () >= 0 ? range.nelem () : 1); } } else if (arg.is_sparse_type ()) retval = do_minmax_red_op<SparseMatrix> (arg, nargout, dim, ismin); else retval = do_minmax_red_op<NDArray> (arg, nargout, dim, ismin); break; } case btyp_complex: { if (arg.is_sparse_type ()) retval = do_minmax_red_op<SparseComplexMatrix> (arg, nargout, dim, ismin); else retval = do_minmax_red_op<ComplexNDArray> (arg, nargout, dim, ismin); break; } case btyp_float: retval = do_minmax_red_op<FloatNDArray> (arg, nargout, dim, ismin); break; case btyp_float_complex: retval = do_minmax_red_op<FloatComplexNDArray> (arg, nargout, dim, ismin); break; case btyp_char: retval = do_minmax_red_op<charNDArray> (arg, nargout, dim, ismin); break; #define MAKE_INT_BRANCH(X) \ case btyp_ ## X: \ retval = do_minmax_red_op<X ## NDArray> (arg, nargout, dim, ismin); \ break; MAKE_INT_BRANCH (int8); MAKE_INT_BRANCH (int16); MAKE_INT_BRANCH (int32); MAKE_INT_BRANCH (int64); MAKE_INT_BRANCH (uint8); MAKE_INT_BRANCH (uint16); MAKE_INT_BRANCH (uint32); MAKE_INT_BRANCH (uint64); #undef MAKE_INT_BRANCH case btyp_bool: retval = do_minmax_red_op<boolNDArray> (arg, nargout, dim, ismin); break; default: gripe_wrong_type_arg (func, arg); } } else if (nargin == 2) { octave_value argx = args(0), argy = args(1); builtin_type_t xtyp = argx.builtin_type (), ytyp = argy.builtin_type (); builtin_type_t rtyp; if (xtyp == btyp_char && ytyp == btyp_char) rtyp = btyp_char; else rtyp = btyp_mixed_numeric (xtyp, ytyp); switch (rtyp) { case btyp_double: { if ((argx.is_sparse_type () && (argy.is_sparse_type () || argy.is_scalar_type ())) || (argy.is_sparse_type () && argx.is_scalar_type ())) retval = do_minmax_bin_op<SparseMatrix> (argx, argy, ismin); else retval = do_minmax_bin_op<NDArray> (argx, argy, ismin); break; } case btyp_complex: { if ((argx.is_sparse_type () && (argy.is_sparse_type () || argy.is_scalar_type ())) || (argy.is_sparse_type () && argx.is_scalar_type ())) retval = do_minmax_bin_op<SparseComplexMatrix> (argx, argy, ismin); else retval = do_minmax_bin_op<ComplexNDArray> (argx, argy, ismin); break; } case btyp_float: retval = do_minmax_bin_op<FloatNDArray> (argx, argy, ismin); break; case btyp_float_complex: retval = do_minmax_bin_op<FloatComplexNDArray> (argx, argy, ismin); break; case btyp_char: retval = do_minmax_bin_op<charNDArray> (argx, argy, ismin); break; #define MAKE_INT_BRANCH(X) \ case btyp_ ## X: \ retval = do_minmax_bin_op<X ## NDArray> (argx, argy, ismin); \ break; MAKE_INT_BRANCH (int8); MAKE_INT_BRANCH (int16); MAKE_INT_BRANCH (int32); MAKE_INT_BRANCH (int64); MAKE_INT_BRANCH (uint8); MAKE_INT_BRANCH (uint16); MAKE_INT_BRANCH (uint32); MAKE_INT_BRANCH (uint64); #undef MAKE_INT_BRANCH default: error ("%s: cannot compute %s (%s, %s)", func, func, argx.type_name ().c_str (), argy.type_name ().c_str ()); } } else print_usage (); return retval; } DEFUN (min, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} min (@var{x})\n\ @deftypefnx {Built-in Function} {} min (@var{x}, @var{y})\n\ @deftypefnx {Built-in Function} {} min (@var{x}, [], @var{dim})\n\ @deftypefnx {Built-in Function} {} min (@var{x}, @var{y}, @var{dim})\n\ @deftypefnx {Built-in Function} {[@var{w}, @var{iw}] =} min (@var{x})\n\ For a vector argument, return the minimum value. For a matrix\n\ argument, return the minimum value from each column, as a row\n\ vector, or over the dimension @var{dim} if defined, in which case @var{y} \n\ should be set to the empty matrix (it's ignored otherwise). For two matrices\n\ (or a matrix and scalar), return the pair-wise minimum.\n\ Thus,\n\ \n\ @example\n\ min (min (@var{x}))\n\ @end example\n\ \n\ @noindent\n\ returns the smallest element of @var{x}, and\n\ \n\ @example\n\ @group\n\ min (2:5, pi)\n\ @result{} 2.0000 3.0000 3.1416 3.1416\n\ @end group\n\ @end example\n\ \n\ @noindent\n\ compares each element of the range @code{2:5} with @code{pi}, and\n\ returns a row vector of the minimum values.\n\ \n\ For complex arguments, the magnitude of the elements are used for\n\ comparison.\n\ \n\ If called with one input and two output arguments,\n\ @code{min} also returns the first index of the\n\ minimum value(s). Thus,\n\ \n\ @example\n\ @group\n\ [x, ix] = min ([1, 3, 0, 2, 0])\n\ @result{} x = 0\n\ ix = 3\n\ @end group\n\ @end example\n\ @seealso{max, cummin, cummax}\n\ @end deftypefn") { return do_minmax_body (args, nargout, true); } /* %!assert (min ([1, 4, 2, 3]), 1) %!assert (min ([1; -10; 5; -2]), -10) %!assert (min ([4, i; -2, 2]), [-2, i]) %!assert (min (char(42)), 42) %!assert (min (char(21), char(3)), 3) %!assert (min([char(21), char(3)]), 3) %!assert (min([char(100) char(3)], [char(42) char(42)]), [42 3]) %!test %! x = reshape (1:8, [2,2,2]); %! assert (max (x, [], 1), reshape ([2, 4, 6, 8], [1,2,2])); %! assert (max (x, [], 2), reshape ([3, 4, 7, 8], [2,1,2])); %! [y, i] = max (x, [], 3); %! assert (ndims (y), 2); %! assert (y, [5, 7; 6, 8]); %! assert (ndims (i), 2); %! assert (i, [2, 2; 2, 2]); %!error min () %!error min (1, 2, 3, 4) */ DEFUN (max, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} max (@var{x})\n\ @deftypefnx {Built-in Function} {} max (@var{x}, @var{y})\n\ @deftypefnx {Built-in Function} {} max (@var{x}, [], @var{dim})\n\ @deftypefnx {Built-in Function} {} max (@var{x}, @var{y}, @var{dim})\n\ @deftypefnx {Built-in Function} {[@var{w}, @var{iw}] =} max (@var{x})\n\ For a vector argument, return the maximum value. For a matrix\n\ argument, return the maximum value from each column, as a row\n\ vector, or over the dimension @var{dim} if defined, in which case @var{y} \n\ should be set to the empty matrix (it's ignored otherwise). For two matrices\n\ (or a matrix and scalar), return the pair-wise maximum.\n\ Thus,\n\ \n\ @example\n\ max (max (@var{x}))\n\ @end example\n\ \n\ @noindent\n\ returns the largest element of the matrix @var{x}, and\n\ \n\ @example\n\ @group\n\ max (2:5, pi)\n\ @result{} 3.1416 3.1416 4.0000 5.0000\n\ @end group\n\ @end example\n\ \n\ @noindent\n\ compares each element of the range @code{2:5} with @code{pi}, and\n\ returns a row vector of the maximum values.\n\ \n\ For complex arguments, the magnitude of the elements are used for\n\ comparison.\n\ \n\ If called with one input and two output arguments,\n\ @code{max} also returns the first index of the\n\ maximum value(s). Thus,\n\ \n\ @example\n\ @group\n\ [x, ix] = max ([1, 3, 5, 2, 5])\n\ @result{} x = 5\n\ ix = 3\n\ @end group\n\ @end example\n\ @seealso{min, cummax, cummin}\n\ @end deftypefn") { return do_minmax_body (args, nargout, false); } /* %!assert (max ([1, 4, 2, 3]), 4) %!assert (max ([1; -10; 5; -2]), 5) %!assert (max ([4, i 4.999; -2, 2, 3+4i]), [4, 2, 3+4i]) %!test %! x = reshape (1:8, [2,2,2]); %! assert (min (x, [], 1), reshape ([1, 3, 5, 7], [1,2,2])); %! assert (min (x, [], 2), reshape ([1, 2, 5, 6], [2,1,2])); %! [y, i] = min (x, [], 3); %! assert (ndims(y), 2); %! assert (y, [1, 3; 2, 4]); %! assert (ndims(i), 2); %! assert (i, [1, 1; 1, 1]); %!error max () %!error max (1, 2, 3, 4) */ template <class ArrayType> static octave_value_list do_cumminmax_red_op (const octave_value& arg, int nargout, int dim, bool ismin) { octave_value_list retval; ArrayType array = octave_value_extract<ArrayType> (arg); if (error_state) return retval; if (nargout == 2) { retval.resize (2); Array<octave_idx_type> idx; if (ismin) retval(0) = array.cummin (idx, dim); else retval(0) = array.cummax (idx, dim); retval(1) = octave_value (idx, true, true); } else { if (ismin) retval(0) = array.cummin (dim); else retval(0) = array.cummax (dim); } return retval; } static octave_value_list do_cumminmax_body (const octave_value_list& args, int nargout, bool ismin) { octave_value_list retval; const char *func = ismin ? "cummin" : "cummax"; int nargin = args.length (); if (nargin == 1 || nargin == 2) { octave_value arg = args(0); int dim = -1; if (nargin == 2) { dim = args(1).int_value (true) - 1; if (error_state || dim < 0) { error ("%s: DIM must be a valid dimension", func); return retval; } } switch (arg.builtin_type ()) { case btyp_double: retval = do_cumminmax_red_op<NDArray> (arg, nargout, dim, ismin); break; case btyp_complex: retval = do_cumminmax_red_op<ComplexNDArray> (arg, nargout, dim, ismin); break; case btyp_float: retval = do_cumminmax_red_op<FloatNDArray> (arg, nargout, dim, ismin); break; case btyp_float_complex: retval = do_cumminmax_red_op<FloatComplexNDArray> (arg, nargout, dim, ismin); break; #define MAKE_INT_BRANCH(X) \ case btyp_ ## X: \ retval = do_cumminmax_red_op<X ## NDArray> (arg, nargout, dim, ismin); \ break; MAKE_INT_BRANCH (int8); MAKE_INT_BRANCH (int16); MAKE_INT_BRANCH (int32); MAKE_INT_BRANCH (int64); MAKE_INT_BRANCH (uint8); MAKE_INT_BRANCH (uint16); MAKE_INT_BRANCH (uint32); MAKE_INT_BRANCH (uint64); #undef MAKE_INT_BRANCH case btyp_bool: { retval = do_cumminmax_red_op<int8NDArray> (arg, nargout, dim, ismin); if (retval.length () > 0) retval(0) = retval(0).bool_array_value (); break; } default: gripe_wrong_type_arg (func, arg); } } else print_usage (); return retval; } DEFUN (cummin, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} cummin (@var{x})\n\ @deftypefnx {Built-in Function} {} cummin (@var{x}, @var{dim})\n\ @deftypefnx {Built-in Function} {[@var{w}, @var{iw}] =} cummin (@var{x})\n\ Return the cumulative minimum values along dimension @var{dim}.\n\ \n\ If @var{dim} is unspecified it defaults to column-wise operation. For\n\ example:\n\ \n\ @example\n\ @group\n\ cummin ([5 4 6 2 3 1])\n\ @result{} 5 4 4 2 2 1\n\ @end group\n\ @end example\n\ \n\ If called with two output arguments the index of the minimum value is also\n\ returned.\n\ \n\ @example\n\ @group\n\ [w, iw] = cummin ([5 4 6 2 3 1])\n\ @result{}\n\ w = 5 4 4 2 2 1\n\ iw = 1 2 2 4 4 6\n\ @end group\n\ @end example\n\ \n\ @seealso{cummax, min, max}\n\ @end deftypefn") { return do_cumminmax_body (args, nargout, true); } /* %!assert (cummin ([1, 4, 2, 3]), [1 1 1 1]) %!assert (cummin ([1; -10; 5; -2]), [1; -10; -10; -10]) %!assert (cummin ([4, i; -2, 2]), [4, i; -2, i]) %!test %! x = reshape (1:8, [2,2,2]); %! assert (cummin (x, 1), reshape ([1 1 3 3 5 5 7 7], [2,2,2])); %! assert (cummin (x, 2), reshape ([1 2 1 2 5 6 5 6], [2,2,2])); %! [w, iw] = cummin (x, 3); %! assert (ndims (w), 3); %! assert (w, repmat ([1 3; 2 4], [1 1 2])); %! assert (ndims (iw), 3); %! assert (iw, ones (2,2,2)); %!error cummin () %!error cummin (1, 2, 3) */ DEFUN (cummax, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} cummax (@var{x})\n\ @deftypefnx {Built-in Function} {} cummax (@var{x}, @var{dim})\n\ @deftypefnx {Built-in Function} {[@var{w}, @var{iw}] =} cummax (@dots{})\n\ Return the cumulative maximum values along dimension @var{dim}.\n\ \n\ If @var{dim} is unspecified it defaults to column-wise operation. For\n\ example:\n\ \n\ @example\n\ @group\n\ cummax ([1 3 2 6 4 5])\n\ @result{} 1 3 3 6 6 6\n\ @end group\n\ @end example\n\ \n\ If called with two output arguments the index of the maximum value is also\n\ returned.\n\ \n\ @example\n\ @group\n\ [w, iw] = cummax ([1 3 2 6 4 5])\n\ @result{}\n\ w = 1 3 3 6 6 6\n\ iw = 1 2 2 4 4 4\n\ @end group\n\ @end example\n\ \n\ @seealso{cummin, max, min}\n\ @end deftypefn") { return do_cumminmax_body (args, nargout, false); } /* %!assert (cummax ([1, 4, 2, 3]), [1 4 4 4]) %!assert (cummax ([1; -10; 5; -2]), [1; 1; 5; 5]) %!assert (cummax ([4, i 4.9, -2, 2, 3+4i]), [4, 4, 4.9, 4.9, 4.9, 3+4i]) %!test %! x = reshape (8:-1:1, [2,2,2]); %! assert (cummax (x, 1), reshape ([8 8 6 6 4 4 2 2], [2,2,2])); %! assert (cummax (x, 2), reshape ([8 7 8 7 4 3 4 3], [2,2,2])); %! [w, iw] = cummax (x, 3); %! assert (ndims (w), 3); %! assert (w, repmat ([8 6; 7 5], [1 1 2])); %! assert (ndims (iw), 3); %! assert (iw, ones (2,2,2)); %!error cummax () %!error cummax (1, 2, 3) */