Mercurial > hg > octave-lyh
view libinterp/corefcn/mgorth.cc @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | 057beb799f13 |
children |
line wrap: on
line source
/* Copyright (C) 2009-2012 Carlo de Falco Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "oct-norm.h" #include "defun.h" #include "error.h" #include "gripes.h" template <class ColumnVector, class Matrix, class RowVector> static void do_mgorth (ColumnVector& x, const Matrix& V, RowVector& h) { octave_idx_type Vc = V.columns (); h = RowVector (Vc + 1); for (octave_idx_type j = 0; j < Vc; j++) { ColumnVector Vcj = V.column (j); h(j) = RowVector (Vcj.hermitian ()) * x; x -= h(j) * Vcj; } h(Vc) = xnorm (x); if (real (h(Vc)) > 0) x = x / h(Vc); } DEFUN (mgorth, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {[@var{y}, @var{h}] =} mgorth (@var{x}, @var{v})\n\ Orthogonalize a given column vector @var{x} with respect to a set of\n\ orthonormal vectors comprising the columns of @var{v}\n\ using the modified Gram-Schmidt method.\n\ On exit, @var{y} is a unit vector such that:\n\ \n\ @example\n\ @group\n\ norm (@var{y}) = 1\n\ @var{v}' * @var{y} = 0\n\ @var{x} = [@var{v}, @var{y}]*@var{h}'\n\ @end group\n\ @end example\n\ \n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 2 || nargout > 2) { print_usage (); return retval; } octave_value arg_x = args(0); octave_value arg_v = args(1); if (arg_v.ndims () != 2 || arg_x.ndims () != 2 || arg_x.columns () != 1 || arg_v.rows () != arg_x.rows ()) { error ("mgorth: V should be a matrix, and X a column vector with" " the same number of rows as V."); return retval; } if (! arg_x.is_numeric_type () && ! arg_v.is_numeric_type ()) { error ("mgorth: X and V must be numeric"); } bool iscomplex = (arg_x.is_complex_type () || arg_v.is_complex_type ()); if (arg_x.is_single_type () || arg_v.is_single_type ()) { if (iscomplex) { FloatComplexColumnVector x = arg_x.float_complex_column_vector_value (); FloatComplexMatrix V = arg_v.float_complex_matrix_value (); FloatComplexRowVector h; do_mgorth (x, V, h); retval(1) = h; retval(0) = x; } else { FloatColumnVector x = arg_x.float_column_vector_value (); FloatMatrix V = arg_v.float_matrix_value (); FloatRowVector h; do_mgorth (x, V, h); retval(1) = h; retval(0) = x; } } else { if (iscomplex) { ComplexColumnVector x = arg_x.complex_column_vector_value (); ComplexMatrix V = arg_v.complex_matrix_value (); ComplexRowVector h; do_mgorth (x, V, h); retval(1) = h; retval(0) = x; } else { ColumnVector x = arg_x.column_vector_value (); Matrix V = arg_v.matrix_value (); RowVector h; do_mgorth (x, V, h); retval(1) = h; retval(0) = x; } } return retval; } /* %!test %! for ii=1:100 %! assert (abs (mgorth (randn (5, 1), eye (5, 4))), [0 0 0 0 1]', eps); %! endfor %!test %! a = hilb (5); %! a(:, 1) /= norm (a(:, 1)); %! for ii = 1:5 %! a(:, ii) = mgorth (a(:, ii), a(:, 1:ii-1)); %! endfor %! assert (a' * a, eye (5), 1e10); */