Mercurial > hg > octave-lyh
view libinterp/corefcn/pinv.cc @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | b81b9d079515 |
children |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" #include "ops.h" #include "ov-re-diag.h" #include "ov-cx-diag.h" #include "ov-flt-re-diag.h" #include "ov-flt-cx-diag.h" #include "ov-perm.h" DEFUN (pinv, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} pinv (@var{x})\n\ @deftypefnx {Built-in Function} {} pinv (@var{x}, @var{tol})\n\ Return the pseudoinverse of @var{x}. Singular values less than\n\ @var{tol} are ignored.\n\ \n\ If the second argument is omitted, it is taken to be\n\ \n\ @example\n\ tol = max (size (@var{x})) * sigma_max (@var{x}) * eps,\n\ @end example\n\ \n\ @noindent\n\ where @code{sigma_max (@var{x})} is the maximal singular value of @var{x}.\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin < 1 || nargin > 2) { print_usage (); return retval; } octave_value arg = args(0); int arg_is_empty = empty_arg ("pinv", arg.rows (), arg.columns ()); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value (Matrix ()); bool isfloat = arg.is_single_type (); if (arg.is_diag_matrix ()) { if (nargin == 2) warning ("pinv: tol is ignored for diagonal matrices"); if (arg.is_complex_type ()) { if (isfloat) retval = arg.float_complex_diag_matrix_value ().pseudo_inverse (); else retval = arg.complex_diag_matrix_value ().pseudo_inverse (); } else { if (isfloat) retval = arg.float_diag_matrix_value ().pseudo_inverse (); else retval = arg.diag_matrix_value ().pseudo_inverse (); } } else if (arg.is_perm_matrix ()) { retval = arg.perm_matrix_value ().inverse (); } else if (isfloat) { float tol = 0.0; if (nargin == 2) tol = args(1).float_value (); if (error_state) return retval; if (tol < 0.0) { error ("pinv: TOL must be greater than zero"); return retval; } if (arg.is_real_type ()) { FloatMatrix m = arg.float_matrix_value (); if (! error_state) retval = m.pseudo_inverse (tol); } else if (arg.is_complex_type ()) { FloatComplexMatrix m = arg.float_complex_matrix_value (); if (! error_state) retval = m.pseudo_inverse (tol); } else { gripe_wrong_type_arg ("pinv", arg); } } else { double tol = 0.0; if (nargin == 2) tol = args(1).double_value (); if (error_state) return retval; if (tol < 0.0) { error ("pinv: TOL must be greater than zero"); return retval; } if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) retval = m.pseudo_inverse (tol); } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) retval = m.pseudo_inverse (tol); } else { gripe_wrong_type_arg ("pinv", arg); } } return retval; } /* %!shared a, b, tol, hitol, d, u, x, y %! a = reshape (rand*[1:16], 4, 4); # Rank 2 matrix %! b = pinv (a); %! tol = 4e-14; %! hitol = 40*sqrt (eps); %! d = diag ([rand, rand, hitol, hitol]); %! u = rand (4); # Could be singular by freak accident %! x = inv (u)*d*u; %! y = pinv (x, sqrt (eps)); %! %!assert (a*b*a, a, tol) %!assert (b*a*b, b, tol) %!assert ((b*a)', b*a, tol) %!assert ((a*b)', a*b, tol) %!assert (x*y*x, x, -hitol) %!assert (y*x*y, y, -hitol) %!assert ((x*y)', x*y, hitol) %!assert ((y*x)', y*x, hitol) */