Mercurial > hg > octave-lyh
view libinterp/corefcn/syl.cc @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | 2fc554ffbc28 |
children |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // Author: A. S. Hodel <scotte@eng.auburn.edu> #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (syl, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{x} =} syl (@var{A}, @var{B}, @var{C})\n\ Solve the Sylvester equation\n\ @tex\n\ $$\n\ A X + X B + C = 0\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ A X + X B + C = 0\n\ @end example\n\ \n\ @end ifnottex\n\ using standard @sc{lapack} subroutines. For example:\n\ \n\ @example\n\ @group\n\ syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])\n\ @result{} [ -0.50000, -0.66667; -0.66667, -0.50000 ]\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin != 3 || nargout > 1) { print_usage (); return retval; } octave_value arg_a = args(0); octave_value arg_b = args(1); octave_value arg_c = args(2); octave_idx_type a_nr = arg_a.rows (); octave_idx_type a_nc = arg_a.columns (); octave_idx_type b_nr = arg_b.rows (); octave_idx_type b_nc = arg_b.columns (); octave_idx_type c_nr = arg_c.rows (); octave_idx_type c_nc = arg_c.columns (); int arg_a_is_empty = empty_arg ("syl", a_nr, a_nc); int arg_b_is_empty = empty_arg ("syl", b_nr, b_nc); int arg_c_is_empty = empty_arg ("syl", c_nr, c_nc); bool isfloat = arg_a.is_single_type () || arg_b.is_single_type () || arg_c.is_single_type (); if (arg_a_is_empty > 0 && arg_b_is_empty > 0 && arg_c_is_empty > 0) if (isfloat) return octave_value (FloatMatrix ()); else return octave_value (Matrix ()); else if (arg_a_is_empty || arg_b_is_empty || arg_c_is_empty) return retval; // Arguments are not empty, so check for correct dimensions. if (a_nr != a_nc || b_nr != b_nc) { gripe_square_matrix_required ("syl: first two parameters:"); return retval; } else if (a_nr != c_nr || b_nr != c_nc) { gripe_nonconformant (); return retval; } // Dimensions look o.k., let's solve the problem. if (isfloat) { if (arg_a.is_complex_type () || arg_b.is_complex_type () || arg_c.is_complex_type ()) { // Do everything in complex arithmetic; FloatComplexMatrix ca = arg_a.float_complex_matrix_value (); if (error_state) return retval; FloatComplexMatrix cb = arg_b.float_complex_matrix_value (); if (error_state) return retval; FloatComplexMatrix cc = arg_c.float_complex_matrix_value (); if (error_state) return retval; retval = Sylvester (ca, cb, cc); } else { // Do everything in real arithmetic. FloatMatrix ca = arg_a.float_matrix_value (); if (error_state) return retval; FloatMatrix cb = arg_b.float_matrix_value (); if (error_state) return retval; FloatMatrix cc = arg_c.float_matrix_value (); if (error_state) return retval; retval = Sylvester (ca, cb, cc); } } else { if (arg_a.is_complex_type () || arg_b.is_complex_type () || arg_c.is_complex_type ()) { // Do everything in complex arithmetic; ComplexMatrix ca = arg_a.complex_matrix_value (); if (error_state) return retval; ComplexMatrix cb = arg_b.complex_matrix_value (); if (error_state) return retval; ComplexMatrix cc = arg_c.complex_matrix_value (); if (error_state) return retval; retval = Sylvester (ca, cb, cc); } else { // Do everything in real arithmetic. Matrix ca = arg_a.matrix_value (); if (error_state) return retval; Matrix cb = arg_b.matrix_value (); if (error_state) return retval; Matrix cc = arg_c.matrix_value (); if (error_state) return retval; retval = Sylvester (ca, cb, cc); } } return retval; } /* %!assert (syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12]), [-1/2, -2/3; -2/3, -1/2], sqrt (eps)) %!assert (syl (single ([1, 2; 3, 4]), single ([5, 6; 7, 8]), single ([9, 10; 11, 12])), single ([-1/2, -2/3; -2/3, -1/2]), sqrt (eps ("single"))) %!error syl () %!error syl (1, 2, 3, 4) %!error <must be a square matrix> syl ([1, 2; 3, 4], [1, 2, 3; 4, 5, 6], [4, 3]) */