Mercurial > hg > octave-lyh
view scripts/statistics/base/kurtosis.m @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | d931d9b458fc |
children |
line wrap: on
line source
## Copyright (C) 1996-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} kurtosis (@var{x}) ## @deftypefnx {Function File} {} kurtosis (@var{x}, @var{dim}) ## Compute the kurtosis of the elements of the vector @var{x}. ## @tex ## $$ ## {\rm kurtosis} (x) = {1\over N \sigma^4} \sum_{i=1}^N (x_i-\bar{x})^4 - 3 ## $$ ## where $\bar{x}$ is the mean value of $x$. ## @end tex ## @ifnottex ## ## @example ## @group ## 1 sum ((x - mean(x)).^4) ## kurtosis (x) = --- * ---------------------- - 3 ## N std(x)^4 ## @end group ## @end example ## ## @end ifnottex ## If @var{x} is a matrix, return the kurtosis over the ## first non-singleton dimension of the matrix. If the optional ## @var{dim} argument is given, operate along this dimension. ## ## Note: The definition of kurtosis above yields a kurtosis of zero for the ## stdnormal distribution and is sometimes referred to as "excess kurtosis". ## To calculate kurtosis without the normalization factor of @math{-3} use ## @code{moment (@var{x}, 4, 'c') / std (@var{x})^4}. ## @seealso{var, skewness, moment} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 29 July 1994 ## Adapted-By: jwe function retval = kurtosis (x, dim) if (nargin != 1 && nargin != 2) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("kurtosis: X must be a numeric vector or matrix"); endif nd = ndims (x); sz = size (x); if (nargin != 2) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("kurtosis: DIM must be an integer and a valid dimension"); endif endif n = sz(dim); sz(dim) = 1; x = center (x, dim); # center also promotes integer to double for next line retval = zeros (sz, class (x)); s = std (x, [], dim); idx = find (s > 0); x = sum (x.^4, dim); retval(idx) = x(idx) ./ (n * s(idx) .^ 4) - 3; endfunction %!test %! x = [-1; 0; 0; 0; 1]; %! y = [x, 2*x]; %! assert (kurtosis (y), [-1.4, -1.4], sqrt (eps)); %!assert (kurtosis (single (1)), single (0)) %% Test input validation %!error kurtosis () %!error kurtosis (1, 2, 3) %!error kurtosis (['A'; 'B']) %!error kurtosis (1, ones (2,2)) %!error kurtosis (1, 1.5) %!error kurtosis (1, 0) %!error kurtosis (1, 3)