Mercurial > hg > octave-lyh
view scripts/statistics/distributions/hygepdf.m @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1996-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} hygepdf (@var{x}, @var{t}, @var{m}, @var{n}) ## Compute the probability density function (PDF) at @var{x} of the ## hypergeometric distribution with parameters @var{t}, @var{m}, and ## @var{n}. This is the probability of obtaining @var{x} marked items ## when randomly drawing a sample of size @var{n} without replacement ## from a population of total size @var{t} containing @var{m} marked items. ## ## The parameters @var{t}, @var{m}, and @var{n} must be positive integers ## with @var{m} and @var{n} not greater than @var{t}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the hypergeometric distribution function pdf = hygepdf (x, t, m, n) if (nargin != 4) print_usage (); endif if (!isscalar (t) || !isscalar (m) || !isscalar (n)) [retval, x, t, m, n] = common_size (x, t, m, n); if (retval > 0) error ("hygepdf: X, T, M, and N must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (t) || iscomplex (m) || iscomplex (n)) error ("hygepdf: X, T, M, and N must not be complex"); endif if (isa (x, "single") || isa (t, "single") || isa (m, "single") || isa (n, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif ## everything in nel gives NaN nel = (isnan (x) | (t < 0) | (m < 0) | (n <= 0) | (m > t) | (n > t) | (t != fix (t)) | (m != fix (m)) | (n != fix (n))); ## everything in zel gives 0 unless in nel zel = ((x != fix (x)) | (x < 0) | (x > m) | (n < x) | (n-x > t-m)); pdf(nel) = NaN; k = !nel & !zel; if (any (k(:))) if (isscalar (t) && isscalar (m) && isscalar (n)) pdf(k) = (bincoeff (m, x(k)) .* bincoeff (t-m, n-x(k)) / bincoeff (t, n)); else pdf(k) = (bincoeff (m(k), x(k)) .* bincoeff (t(k)-m(k), n(k)-x(k)) ./ bincoeff (t(k), n(k))); endif endif endfunction %!shared x,y %! x = [-1 0 1 2 3]; %! y = [0 1/6 4/6 1/6 0]; %!assert (hygepdf (x, 4*ones (1,5), 2, 2), y) %!assert (hygepdf (x, 4, 2*ones (1,5), 2), y) %!assert (hygepdf (x, 4, 2, 2*ones (1,5)), y) %!assert (hygepdf (x, 4*[1 -1 NaN 1.1 1], 2, 2), [0 NaN NaN NaN 0]) %!assert (hygepdf (x, 4, 2*[1 -1 NaN 1.1 1], 2), [0 NaN NaN NaN 0]) %!assert (hygepdf (x, 4, 5, 2), [NaN NaN NaN NaN NaN]) %!assert (hygepdf (x, 4, 2, 2*[1 -1 NaN 1.1 1]), [0 NaN NaN NaN 0]) %!assert (hygepdf (x, 4, 2, 5), [NaN NaN NaN NaN NaN]) %!assert (hygepdf ([x, NaN], 4, 2, 2), [y, NaN], eps) %% Test class of input preserved %!assert (hygepdf (single ([x, NaN]), 4, 2, 2), single ([y, NaN])) %!assert (hygepdf ([x, NaN], single (4), 2, 2), single ([y, NaN])) %!assert (hygepdf ([x, NaN], 4, single (2), 2), single ([y, NaN])) %!assert (hygepdf ([x, NaN], 4, 2, single (2)), single ([y, NaN])) %% Test input validation %!error hygepdf () %!error hygepdf (1) %!error hygepdf (1,2) %!error hygepdf (1,2,3) %!error hygepdf (1,2,3,4,5) %!error hygepdf (1, ones (3), ones (2), ones (2)) %!error hygepdf (1, ones (2), ones (3), ones (2)) %!error hygepdf (1, ones (2), ones (2), ones (3)) %!error hygepdf (i, 2, 2, 2) %!error hygepdf (2, i, 2, 2) %!error hygepdf (2, 2, i, 2) %!error hygepdf (2, 2, 2, i)