Mercurial > hg > octave-lyh
view scripts/statistics/distributions/norminv.m @ 17535:c12c688a35ed default tip lyh
Fix warnings
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 17:43:27 +0800 |
parents | 58188d5a2587 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} norminv (@var{x}) ## @deftypefnx {Function File} {} norminv (@var{x}, @var{mu}, @var{sigma}) ## For each element of @var{x}, compute the quantile (the inverse of the ## CDF) at @var{x} of the normal distribution with mean @var{mu} and ## standard deviation @var{sigma}. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the normal distribution function inv = norminv (x, mu = 0, sigma = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (!isscalar (mu) || !isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("norminv: X, MU, and SIGMA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("norminv: X, MU, and SIGMA must not be complex"); endif if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) inv = NaN (size (x), "single"); else inv = NaN (size (x)); endif if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma > 0) && (sigma < Inf)) inv = mu + sigma * stdnormal_inv (x); endif else k = isfinite (mu) & (sigma > 0) & (sigma < Inf); inv(k) = mu(k) + sigma(k) .* stdnormal_inv (x(k)); endif endfunction %!shared x %! x = [-1 0 0.5 1 2]; %!assert (norminv (x, ones (1,5), ones (1,5)), [NaN -Inf 1 Inf NaN]) %!assert (norminv (x, 1, ones (1,5)), [NaN -Inf 1 Inf NaN]) %!assert (norminv (x, ones (1,5), 1), [NaN -Inf 1 Inf NaN]) %!assert (norminv (x, [1 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN NaN]) %!assert (norminv (x, 1, [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (norminv ([x(1:2) NaN x(4:5)], 1, 1), [NaN -Inf NaN Inf NaN]) %% Test class of input preserved %!assert (norminv ([x, NaN], 1, 1), [NaN -Inf 1 Inf NaN NaN]) %!assert (norminv (single ([x, NaN]), 1, 1), single ([NaN -Inf 1 Inf NaN NaN])) %!assert (norminv ([x, NaN], single (1), 1), single ([NaN -Inf 1 Inf NaN NaN])) %!assert (norminv ([x, NaN], 1, single (1)), single ([NaN -Inf 1 Inf NaN NaN])) %% Test input validation %!error norminv () %!error norminv (1,2) %!error norminv (1,2,3,4) %!error norminv (ones (3), ones (2), ones (2)) %!error norminv (ones (2), ones (3), ones (2)) %!error norminv (ones (2), ones (2), ones (3)) %!error norminv (i, 2, 2) %!error norminv (2, i, 2) %!error norminv (2, 2, i)