2814
|
1 SUBROUTINE DSTERF( N, D, E, INFO ) |
|
2 * |
3333
|
3 * -- LAPACK routine (version 3.0) -- |
2814
|
4 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., |
|
5 * Courant Institute, Argonne National Lab, and Rice University |
3333
|
6 * June 30, 1999 |
2814
|
7 * |
|
8 * .. Scalar Arguments .. |
|
9 INTEGER INFO, N |
|
10 * .. |
|
11 * .. Array Arguments .. |
|
12 DOUBLE PRECISION D( * ), E( * ) |
|
13 * .. |
|
14 * |
|
15 * Purpose |
|
16 * ======= |
|
17 * |
|
18 * DSTERF computes all eigenvalues of a symmetric tridiagonal matrix |
|
19 * using the Pal-Walker-Kahan variant of the QL or QR algorithm. |
|
20 * |
|
21 * Arguments |
|
22 * ========= |
|
23 * |
|
24 * N (input) INTEGER |
|
25 * The order of the matrix. N >= 0. |
|
26 * |
|
27 * D (input/output) DOUBLE PRECISION array, dimension (N) |
|
28 * On entry, the n diagonal elements of the tridiagonal matrix. |
|
29 * On exit, if INFO = 0, the eigenvalues in ascending order. |
|
30 * |
|
31 * E (input/output) DOUBLE PRECISION array, dimension (N-1) |
|
32 * On entry, the (n-1) subdiagonal elements of the tridiagonal |
|
33 * matrix. |
|
34 * On exit, E has been destroyed. |
|
35 * |
|
36 * INFO (output) INTEGER |
|
37 * = 0: successful exit |
|
38 * < 0: if INFO = -i, the i-th argument had an illegal value |
|
39 * > 0: the algorithm failed to find all of the eigenvalues in |
|
40 * a total of 30*N iterations; if INFO = i, then i |
|
41 * elements of E have not converged to zero. |
|
42 * |
|
43 * ===================================================================== |
|
44 * |
|
45 * .. Parameters .. |
|
46 DOUBLE PRECISION ZERO, ONE, TWO, THREE |
|
47 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, |
|
48 $ THREE = 3.0D0 ) |
|
49 INTEGER MAXIT |
|
50 PARAMETER ( MAXIT = 30 ) |
|
51 * .. |
|
52 * .. Local Scalars .. |
3333
|
53 INTEGER I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M, |
|
54 $ NMAXIT |
2814
|
55 DOUBLE PRECISION ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC, |
|
56 $ OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN, |
3333
|
57 $ SIGMA, SSFMAX, SSFMIN |
2814
|
58 * .. |
|
59 * .. External Functions .. |
|
60 DOUBLE PRECISION DLAMCH, DLANST, DLAPY2 |
|
61 EXTERNAL DLAMCH, DLANST, DLAPY2 |
|
62 * .. |
|
63 * .. External Subroutines .. |
|
64 EXTERNAL DLAE2, DLASCL, DLASRT, XERBLA |
|
65 * .. |
|
66 * .. Intrinsic Functions .. |
|
67 INTRINSIC ABS, SIGN, SQRT |
|
68 * .. |
|
69 * .. Executable Statements .. |
|
70 * |
|
71 * Test the input parameters. |
|
72 * |
|
73 INFO = 0 |
|
74 * |
|
75 * Quick return if possible |
|
76 * |
|
77 IF( N.LT.0 ) THEN |
|
78 INFO = -1 |
|
79 CALL XERBLA( 'DSTERF', -INFO ) |
|
80 RETURN |
|
81 END IF |
|
82 IF( N.LE.1 ) |
|
83 $ RETURN |
|
84 * |
|
85 * Determine the unit roundoff for this environment. |
|
86 * |
|
87 EPS = DLAMCH( 'E' ) |
|
88 EPS2 = EPS**2 |
|
89 SAFMIN = DLAMCH( 'S' ) |
|
90 SAFMAX = ONE / SAFMIN |
|
91 SSFMAX = SQRT( SAFMAX ) / THREE |
|
92 SSFMIN = SQRT( SAFMIN ) / EPS2 |
|
93 * |
|
94 * Compute the eigenvalues of the tridiagonal matrix. |
|
95 * |
|
96 NMAXIT = N*MAXIT |
|
97 SIGMA = ZERO |
|
98 JTOT = 0 |
|
99 * |
|
100 * Determine where the matrix splits and choose QL or QR iteration |
|
101 * for each block, according to whether top or bottom diagonal |
|
102 * element is smaller. |
|
103 * |
|
104 L1 = 1 |
|
105 * |
|
106 10 CONTINUE |
|
107 IF( L1.GT.N ) |
|
108 $ GO TO 170 |
|
109 IF( L1.GT.1 ) |
|
110 $ E( L1-1 ) = ZERO |
3333
|
111 DO 20 M = L1, N - 1 |
|
112 IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+ |
|
113 $ 1 ) ) ) )*EPS ) THEN |
|
114 E( M ) = ZERO |
|
115 GO TO 30 |
|
116 END IF |
|
117 20 CONTINUE |
2814
|
118 M = N |
|
119 * |
|
120 30 CONTINUE |
|
121 L = L1 |
|
122 LSV = L |
|
123 LEND = M |
|
124 LENDSV = LEND |
|
125 L1 = M + 1 |
|
126 IF( LEND.EQ.L ) |
|
127 $ GO TO 10 |
|
128 * |
|
129 * Scale submatrix in rows and columns L to LEND |
|
130 * |
|
131 ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) ) |
|
132 ISCALE = 0 |
|
133 IF( ANORM.GT.SSFMAX ) THEN |
|
134 ISCALE = 1 |
|
135 CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, |
|
136 $ INFO ) |
|
137 CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, |
|
138 $ INFO ) |
|
139 ELSE IF( ANORM.LT.SSFMIN ) THEN |
|
140 ISCALE = 2 |
|
141 CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, |
|
142 $ INFO ) |
|
143 CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, |
|
144 $ INFO ) |
|
145 END IF |
|
146 * |
|
147 DO 40 I = L, LEND - 1 |
|
148 E( I ) = E( I )**2 |
|
149 40 CONTINUE |
|
150 * |
|
151 * Choose between QL and QR iteration |
|
152 * |
|
153 IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN |
|
154 LEND = LSV |
|
155 L = LENDSV |
|
156 END IF |
|
157 * |
|
158 IF( LEND.GE.L ) THEN |
|
159 * |
|
160 * QL Iteration |
|
161 * |
|
162 * Look for small subdiagonal element. |
|
163 * |
|
164 50 CONTINUE |
|
165 IF( L.NE.LEND ) THEN |
3333
|
166 DO 60 M = L, LEND - 1 |
|
167 IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) ) |
2814
|
168 $ GO TO 70 |
|
169 60 CONTINUE |
|
170 END IF |
|
171 M = LEND |
|
172 * |
|
173 70 CONTINUE |
|
174 IF( M.LT.LEND ) |
|
175 $ E( M ) = ZERO |
|
176 P = D( L ) |
|
177 IF( M.EQ.L ) |
|
178 $ GO TO 90 |
|
179 * |
|
180 * If remaining matrix is 2 by 2, use DLAE2 to compute its |
|
181 * eigenvalues. |
|
182 * |
|
183 IF( M.EQ.L+1 ) THEN |
|
184 RTE = SQRT( E( L ) ) |
|
185 CALL DLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 ) |
|
186 D( L ) = RT1 |
|
187 D( L+1 ) = RT2 |
|
188 E( L ) = ZERO |
|
189 L = L + 2 |
|
190 IF( L.LE.LEND ) |
|
191 $ GO TO 50 |
|
192 GO TO 150 |
|
193 END IF |
|
194 * |
|
195 IF( JTOT.EQ.NMAXIT ) |
|
196 $ GO TO 150 |
|
197 JTOT = JTOT + 1 |
|
198 * |
|
199 * Form shift. |
|
200 * |
|
201 RTE = SQRT( E( L ) ) |
|
202 SIGMA = ( D( L+1 )-P ) / ( TWO*RTE ) |
|
203 R = DLAPY2( SIGMA, ONE ) |
|
204 SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) ) |
|
205 * |
|
206 C = ONE |
|
207 S = ZERO |
|
208 GAMMA = D( M ) - SIGMA |
|
209 P = GAMMA*GAMMA |
|
210 * |
|
211 * Inner loop |
|
212 * |
3333
|
213 DO 80 I = M - 1, L, -1 |
2814
|
214 BB = E( I ) |
|
215 R = P + BB |
|
216 IF( I.NE.M-1 ) |
|
217 $ E( I+1 ) = S*R |
|
218 OLDC = C |
|
219 C = P / R |
|
220 S = BB / R |
|
221 OLDGAM = GAMMA |
|
222 ALPHA = D( I ) |
|
223 GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM |
|
224 D( I+1 ) = OLDGAM + ( ALPHA-GAMMA ) |
|
225 IF( C.NE.ZERO ) THEN |
|
226 P = ( GAMMA*GAMMA ) / C |
|
227 ELSE |
|
228 P = OLDC*BB |
|
229 END IF |
|
230 80 CONTINUE |
|
231 * |
|
232 E( L ) = S*P |
|
233 D( L ) = SIGMA + GAMMA |
|
234 GO TO 50 |
|
235 * |
|
236 * Eigenvalue found. |
|
237 * |
|
238 90 CONTINUE |
|
239 D( L ) = P |
|
240 * |
|
241 L = L + 1 |
|
242 IF( L.LE.LEND ) |
|
243 $ GO TO 50 |
|
244 GO TO 150 |
|
245 * |
|
246 ELSE |
|
247 * |
|
248 * QR Iteration |
|
249 * |
|
250 * Look for small superdiagonal element. |
|
251 * |
|
252 100 CONTINUE |
3333
|
253 DO 110 M = L, LEND + 1, -1 |
|
254 IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) ) |
|
255 $ GO TO 120 |
|
256 110 CONTINUE |
2814
|
257 M = LEND |
|
258 * |
|
259 120 CONTINUE |
|
260 IF( M.GT.LEND ) |
|
261 $ E( M-1 ) = ZERO |
|
262 P = D( L ) |
|
263 IF( M.EQ.L ) |
|
264 $ GO TO 140 |
|
265 * |
|
266 * If remaining matrix is 2 by 2, use DLAE2 to compute its |
|
267 * eigenvalues. |
|
268 * |
|
269 IF( M.EQ.L-1 ) THEN |
|
270 RTE = SQRT( E( L-1 ) ) |
|
271 CALL DLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 ) |
|
272 D( L ) = RT1 |
|
273 D( L-1 ) = RT2 |
|
274 E( L-1 ) = ZERO |
|
275 L = L - 2 |
|
276 IF( L.GE.LEND ) |
|
277 $ GO TO 100 |
|
278 GO TO 150 |
|
279 END IF |
|
280 * |
|
281 IF( JTOT.EQ.NMAXIT ) |
|
282 $ GO TO 150 |
|
283 JTOT = JTOT + 1 |
|
284 * |
|
285 * Form shift. |
|
286 * |
|
287 RTE = SQRT( E( L-1 ) ) |
|
288 SIGMA = ( D( L-1 )-P ) / ( TWO*RTE ) |
|
289 R = DLAPY2( SIGMA, ONE ) |
|
290 SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) ) |
|
291 * |
|
292 C = ONE |
|
293 S = ZERO |
|
294 GAMMA = D( M ) - SIGMA |
|
295 P = GAMMA*GAMMA |
|
296 * |
|
297 * Inner loop |
|
298 * |
3333
|
299 DO 130 I = M, L - 1 |
2814
|
300 BB = E( I ) |
|
301 R = P + BB |
|
302 IF( I.NE.M ) |
|
303 $ E( I-1 ) = S*R |
|
304 OLDC = C |
|
305 C = P / R |
|
306 S = BB / R |
|
307 OLDGAM = GAMMA |
|
308 ALPHA = D( I+1 ) |
|
309 GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM |
|
310 D( I ) = OLDGAM + ( ALPHA-GAMMA ) |
|
311 IF( C.NE.ZERO ) THEN |
|
312 P = ( GAMMA*GAMMA ) / C |
|
313 ELSE |
|
314 P = OLDC*BB |
|
315 END IF |
|
316 130 CONTINUE |
|
317 * |
3333
|
318 E( L-1 ) = S*P |
2814
|
319 D( L ) = SIGMA + GAMMA |
|
320 GO TO 100 |
|
321 * |
|
322 * Eigenvalue found. |
|
323 * |
|
324 140 CONTINUE |
|
325 D( L ) = P |
|
326 * |
|
327 L = L - 1 |
|
328 IF( L.GE.LEND ) |
|
329 $ GO TO 100 |
|
330 GO TO 150 |
|
331 * |
|
332 END IF |
|
333 * |
|
334 * Undo scaling if necessary |
|
335 * |
|
336 150 CONTINUE |
|
337 IF( ISCALE.EQ.1 ) |
|
338 $ CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, |
|
339 $ D( LSV ), N, INFO ) |
|
340 IF( ISCALE.EQ.2 ) |
|
341 $ CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, |
|
342 $ D( LSV ), N, INFO ) |
|
343 * |
|
344 * Check for no convergence to an eigenvalue after a total |
|
345 * of N*MAXIT iterations. |
|
346 * |
3333
|
347 IF( JTOT.LT.NMAXIT ) |
|
348 $ GO TO 10 |
|
349 DO 160 I = 1, N - 1 |
|
350 IF( E( I ).NE.ZERO ) |
|
351 $ INFO = INFO + 1 |
|
352 160 CONTINUE |
|
353 GO TO 180 |
2814
|
354 * |
|
355 * Sort eigenvalues in increasing order. |
|
356 * |
|
357 170 CONTINUE |
|
358 CALL DLASRT( 'I', N, D, INFO ) |
|
359 * |
3333
|
360 180 CONTINUE |
2814
|
361 RETURN |
|
362 * |
|
363 * End of DSTERF |
|
364 * |
|
365 END |