2814
|
1 SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO ) |
|
2 * |
3333
|
3 * -- LAPACK routine (version 3.0) -- |
2814
|
4 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., |
|
5 * Courant Institute, Argonne National Lab, and Rice University |
3333
|
6 * June 30, 1999 |
2814
|
7 * |
|
8 * .. Scalar Arguments .. |
|
9 CHARACTER UPLO |
|
10 INTEGER INFO, LDA, LWORK, N |
|
11 * .. |
|
12 * .. Array Arguments .. |
|
13 DOUBLE PRECISION D( * ), E( * ) |
|
14 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) |
|
15 * .. |
|
16 * |
|
17 * Purpose |
|
18 * ======= |
|
19 * |
|
20 * ZHETRD reduces a complex Hermitian matrix A to real symmetric |
|
21 * tridiagonal form T by a unitary similarity transformation: |
|
22 * Q**H * A * Q = T. |
|
23 * |
|
24 * Arguments |
|
25 * ========= |
|
26 * |
|
27 * UPLO (input) CHARACTER*1 |
|
28 * = 'U': Upper triangle of A is stored; |
|
29 * = 'L': Lower triangle of A is stored. |
|
30 * |
|
31 * N (input) INTEGER |
|
32 * The order of the matrix A. N >= 0. |
|
33 * |
|
34 * A (input/output) COMPLEX*16 array, dimension (LDA,N) |
|
35 * On entry, the Hermitian matrix A. If UPLO = 'U', the leading |
|
36 * N-by-N upper triangular part of A contains the upper |
|
37 * triangular part of the matrix A, and the strictly lower |
|
38 * triangular part of A is not referenced. If UPLO = 'L', the |
|
39 * leading N-by-N lower triangular part of A contains the lower |
|
40 * triangular part of the matrix A, and the strictly upper |
|
41 * triangular part of A is not referenced. |
|
42 * On exit, if UPLO = 'U', the diagonal and first superdiagonal |
|
43 * of A are overwritten by the corresponding elements of the |
|
44 * tridiagonal matrix T, and the elements above the first |
|
45 * superdiagonal, with the array TAU, represent the unitary |
|
46 * matrix Q as a product of elementary reflectors; if UPLO |
|
47 * = 'L', the diagonal and first subdiagonal of A are over- |
|
48 * written by the corresponding elements of the tridiagonal |
|
49 * matrix T, and the elements below the first subdiagonal, with |
|
50 * the array TAU, represent the unitary matrix Q as a product |
|
51 * of elementary reflectors. See Further Details. |
|
52 * |
|
53 * LDA (input) INTEGER |
|
54 * The leading dimension of the array A. LDA >= max(1,N). |
|
55 * |
|
56 * D (output) DOUBLE PRECISION array, dimension (N) |
|
57 * The diagonal elements of the tridiagonal matrix T: |
|
58 * D(i) = A(i,i). |
|
59 * |
|
60 * E (output) DOUBLE PRECISION array, dimension (N-1) |
|
61 * The off-diagonal elements of the tridiagonal matrix T: |
|
62 * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. |
|
63 * |
|
64 * TAU (output) COMPLEX*16 array, dimension (N-1) |
|
65 * The scalar factors of the elementary reflectors (see Further |
|
66 * Details). |
|
67 * |
|
68 * WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) |
|
69 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
|
70 * |
|
71 * LWORK (input) INTEGER |
|
72 * The dimension of the array WORK. LWORK >= 1. |
|
73 * For optimum performance LWORK >= N*NB, where NB is the |
|
74 * optimal blocksize. |
|
75 * |
3333
|
76 * If LWORK = -1, then a workspace query is assumed; the routine |
|
77 * only calculates the optimal size of the WORK array, returns |
|
78 * this value as the first entry of the WORK array, and no error |
|
79 * message related to LWORK is issued by XERBLA. |
|
80 * |
2814
|
81 * INFO (output) INTEGER |
|
82 * = 0: successful exit |
|
83 * < 0: if INFO = -i, the i-th argument had an illegal value |
|
84 * |
|
85 * Further Details |
|
86 * =============== |
|
87 * |
|
88 * If UPLO = 'U', the matrix Q is represented as a product of elementary |
|
89 * reflectors |
|
90 * |
|
91 * Q = H(n-1) . . . H(2) H(1). |
|
92 * |
|
93 * Each H(i) has the form |
|
94 * |
|
95 * H(i) = I - tau * v * v' |
|
96 * |
|
97 * where tau is a complex scalar, and v is a complex vector with |
|
98 * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in |
|
99 * A(1:i-1,i+1), and tau in TAU(i). |
|
100 * |
|
101 * If UPLO = 'L', the matrix Q is represented as a product of elementary |
|
102 * reflectors |
|
103 * |
|
104 * Q = H(1) H(2) . . . H(n-1). |
|
105 * |
|
106 * Each H(i) has the form |
|
107 * |
|
108 * H(i) = I - tau * v * v' |
|
109 * |
|
110 * where tau is a complex scalar, and v is a complex vector with |
|
111 * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), |
|
112 * and tau in TAU(i). |
|
113 * |
|
114 * The contents of A on exit are illustrated by the following examples |
|
115 * with n = 5: |
|
116 * |
|
117 * if UPLO = 'U': if UPLO = 'L': |
|
118 * |
|
119 * ( d e v2 v3 v4 ) ( d ) |
|
120 * ( d e v3 v4 ) ( e d ) |
|
121 * ( d e v4 ) ( v1 e d ) |
|
122 * ( d e ) ( v1 v2 e d ) |
|
123 * ( d ) ( v1 v2 v3 e d ) |
|
124 * |
|
125 * where d and e denote diagonal and off-diagonal elements of T, and vi |
|
126 * denotes an element of the vector defining H(i). |
|
127 * |
|
128 * ===================================================================== |
|
129 * |
|
130 * .. Parameters .. |
|
131 DOUBLE PRECISION ONE |
|
132 PARAMETER ( ONE = 1.0D+0 ) |
|
133 COMPLEX*16 CONE |
|
134 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) |
|
135 * .. |
|
136 * .. Local Scalars .. |
3333
|
137 LOGICAL LQUERY, UPPER |
|
138 INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB, |
|
139 $ NBMIN, NX |
2814
|
140 * .. |
|
141 * .. External Subroutines .. |
|
142 EXTERNAL XERBLA, ZHER2K, ZHETD2, ZLATRD |
|
143 * .. |
|
144 * .. Intrinsic Functions .. |
|
145 INTRINSIC MAX |
|
146 * .. |
|
147 * .. External Functions .. |
|
148 LOGICAL LSAME |
|
149 INTEGER ILAENV |
|
150 EXTERNAL LSAME, ILAENV |
|
151 * .. |
|
152 * .. Executable Statements .. |
|
153 * |
|
154 * Test the input parameters |
|
155 * |
|
156 INFO = 0 |
|
157 UPPER = LSAME( UPLO, 'U' ) |
3333
|
158 LQUERY = ( LWORK.EQ.-1 ) |
2814
|
159 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN |
|
160 INFO = -1 |
|
161 ELSE IF( N.LT.0 ) THEN |
|
162 INFO = -2 |
|
163 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN |
|
164 INFO = -4 |
3333
|
165 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN |
2814
|
166 INFO = -9 |
|
167 END IF |
3333
|
168 * |
|
169 IF( INFO.EQ.0 ) THEN |
|
170 * |
|
171 * Determine the block size. |
|
172 * |
|
173 NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) |
|
174 LWKOPT = N*NB |
|
175 WORK( 1 ) = LWKOPT |
|
176 END IF |
|
177 * |
2814
|
178 IF( INFO.NE.0 ) THEN |
|
179 CALL XERBLA( 'ZHETRD', -INFO ) |
|
180 RETURN |
3333
|
181 ELSE IF( LQUERY ) THEN |
|
182 RETURN |
2814
|
183 END IF |
|
184 * |
|
185 * Quick return if possible |
|
186 * |
|
187 IF( N.EQ.0 ) THEN |
|
188 WORK( 1 ) = 1 |
|
189 RETURN |
|
190 END IF |
|
191 * |
|
192 NX = N |
|
193 IWS = 1 |
|
194 IF( NB.GT.1 .AND. NB.LT.N ) THEN |
|
195 * |
|
196 * Determine when to cross over from blocked to unblocked code |
|
197 * (last block is always handled by unblocked code). |
|
198 * |
|
199 NX = MAX( NB, ILAENV( 3, 'ZHETRD', UPLO, N, -1, -1, -1 ) ) |
|
200 IF( NX.LT.N ) THEN |
|
201 * |
|
202 * Determine if workspace is large enough for blocked code. |
|
203 * |
|
204 LDWORK = N |
|
205 IWS = LDWORK*NB |
|
206 IF( LWORK.LT.IWS ) THEN |
|
207 * |
|
208 * Not enough workspace to use optimal NB: determine the |
|
209 * minimum value of NB, and reduce NB or force use of |
|
210 * unblocked code by setting NX = N. |
|
211 * |
|
212 NB = MAX( LWORK / LDWORK, 1 ) |
|
213 NBMIN = ILAENV( 2, 'ZHETRD', UPLO, N, -1, -1, -1 ) |
|
214 IF( NB.LT.NBMIN ) |
|
215 $ NX = N |
|
216 END IF |
|
217 ELSE |
|
218 NX = N |
|
219 END IF |
|
220 ELSE |
|
221 NB = 1 |
|
222 END IF |
|
223 * |
|
224 IF( UPPER ) THEN |
|
225 * |
|
226 * Reduce the upper triangle of A. |
|
227 * Columns 1:kk are handled by the unblocked method. |
|
228 * |
|
229 KK = N - ( ( N-NX+NB-1 ) / NB )*NB |
|
230 DO 20 I = N - NB + 1, KK + 1, -NB |
|
231 * |
|
232 * Reduce columns i:i+nb-1 to tridiagonal form and form the |
|
233 * matrix W which is needed to update the unreduced part of |
|
234 * the matrix |
|
235 * |
|
236 CALL ZLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK, |
|
237 $ LDWORK ) |
|
238 * |
|
239 * Update the unreduced submatrix A(1:i-1,1:i-1), using an |
|
240 * update of the form: A := A - V*W' - W*V' |
|
241 * |
|
242 CALL ZHER2K( UPLO, 'No transpose', I-1, NB, -CONE, |
|
243 $ A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA ) |
|
244 * |
|
245 * Copy superdiagonal elements back into A, and diagonal |
|
246 * elements into D |
|
247 * |
|
248 DO 10 J = I, I + NB - 1 |
|
249 A( J-1, J ) = E( J-1 ) |
|
250 D( J ) = A( J, J ) |
|
251 10 CONTINUE |
|
252 20 CONTINUE |
|
253 * |
|
254 * Use unblocked code to reduce the last or only block |
|
255 * |
|
256 CALL ZHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO ) |
|
257 ELSE |
|
258 * |
|
259 * Reduce the lower triangle of A |
|
260 * |
|
261 DO 40 I = 1, N - NX, NB |
|
262 * |
|
263 * Reduce columns i:i+nb-1 to tridiagonal form and form the |
|
264 * matrix W which is needed to update the unreduced part of |
|
265 * the matrix |
|
266 * |
|
267 CALL ZLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ), |
|
268 $ TAU( I ), WORK, LDWORK ) |
|
269 * |
|
270 * Update the unreduced submatrix A(i+nb:n,i+nb:n), using |
|
271 * an update of the form: A := A - V*W' - W*V' |
|
272 * |
|
273 CALL ZHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE, |
|
274 $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE, |
|
275 $ A( I+NB, I+NB ), LDA ) |
|
276 * |
|
277 * Copy subdiagonal elements back into A, and diagonal |
|
278 * elements into D |
|
279 * |
|
280 DO 30 J = I, I + NB - 1 |
|
281 A( J+1, J ) = E( J ) |
|
282 D( J ) = A( J, J ) |
|
283 30 CONTINUE |
|
284 40 CONTINUE |
|
285 * |
|
286 * Use unblocked code to reduce the last or only block |
|
287 * |
|
288 CALL ZHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ), |
|
289 $ TAU( I ), IINFO ) |
|
290 END IF |
|
291 * |
3333
|
292 WORK( 1 ) = LWKOPT |
2814
|
293 RETURN |
|
294 * |
|
295 * End of ZHETRD |
|
296 * |
|
297 END |