11740
|
1 ## Copyright (C) 2007, 2008 Ben Abbott |
6964
|
2 ## |
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
7016
|
7 ## the Free Software Foundation; either version 3 of the License, or (at |
|
8 ## your option) any later version. |
6964
|
9 ## |
|
10 ## Octave is distributed in the hope that it will be useful, but |
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 ## General Public License for more details. |
|
14 ## |
|
15 ## You should have received a copy of the GNU General Public License |
7016
|
16 ## along with Octave; see the file COPYING. If not, see |
|
17 ## <http://www.gnu.org/licenses/>. |
6964
|
18 |
|
19 ## -*- texinfo -*- |
|
20 ## @deftypefn {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}) |
|
21 ## @deftypefnx {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}, @var{tol}) |
|
22 ## @deftypefnx {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}, @var{tol}, @var{reorder}) |
|
23 ## Identifiy unique poles in @var{p} and associates their multiplicity, |
|
24 ## ordering them from largest to smallest. |
|
25 ## |
|
26 ## If the relative difference of the poles is less than @var{tol}, then |
|
27 ## they are considered to be multiples. The default value for @var{tol} |
|
28 ## is 0.001. |
|
29 ## |
|
30 ## If the optional parameter @var{reorder} is zero, poles are not sorted. |
|
31 ## |
|
32 ## The value @var{multp} is a vector specifying the multiplicity of the |
|
33 ## poles. @var{multp}(:) refers to mulitplicity of @var{p}(@var{indx}(:)). |
|
34 ## |
|
35 ## For example, |
|
36 ## |
|
37 ## @example |
|
38 ## @group |
|
39 ## p = [2 3 1 1 2]; |
|
40 ## [m, n] = mpoles(p); |
|
41 ## @result{} m = [1; 1; 2; 1; 2] |
|
42 ## @result{} n = [2; 5; 1; 4; 3] |
|
43 ## @result{} p(n) = [3, 2, 2, 1, 1] |
|
44 ## @end group |
|
45 ## @end example |
|
46 ## |
|
47 ## @seealso{poly, roots, conv, deconv, polyval, polyderiv, polyinteg, residue} |
|
48 ## @end deftypefn |
|
49 |
|
50 ## Author: Ben Abbott <bpabbott@mac.com> |
|
51 ## Created: Sept 30, 2007 |
|
52 |
|
53 function [multp, indx] = mpoles (p, tol, reorder) |
|
54 |
|
55 if (nargin < 1 || nargin > 3) |
|
56 print_usage (); |
|
57 endif |
|
58 |
|
59 if (nargin < 2 || isempty (tol)) |
|
60 tol = 0.001; |
|
61 endif |
|
62 |
|
63 if (nargin < 3 || isempty (reorder)) |
|
64 reorder = true; |
|
65 endif |
|
66 |
|
67 Np = numel (p); |
|
68 |
|
69 ## Force the poles to be a column vector. |
|
70 |
|
71 p = p(:); |
|
72 |
|
73 ## Sort the poles according to their magnitidues, largest first. |
|
74 |
|
75 if (reorder) |
|
76 ## Sort with smallest magnitude first. |
|
77 [p, ordr] = sort (p); |
|
78 ## Reverse order, largest maginitude first. |
|
79 n = Np:-1:1; |
|
80 p = p(n); |
|
81 ordr = ordr(n); |
|
82 else |
|
83 ordr = 1:Np; |
|
84 endif |
|
85 |
|
86 ## Find pole multiplicty by comparing the relative differnce in the |
|
87 ## poles. |
|
88 |
|
89 multp = zeros (Np, 1); |
|
90 indx = []; |
|
91 n = find (multp == 0, 1); |
|
92 while (n) |
|
93 dp = abs (p-p(n)); |
|
94 if (p(n) == 0.0) |
|
95 p0 = mean (abs (p(find (abs (p) > 0)))); |
|
96 if (isempty (p0)) |
|
97 p0 = 1; |
7151
|
98 endif |
6964
|
99 else |
|
100 p0 = abs (p(n)); |
|
101 endif |
|
102 k = find (dp < tol * p0); |
11612
|
103 ## Poles can only be members of one multiplicity group. |
|
104 if (numel (indx)) |
|
105 k = k(! ismember (k, indx)); |
|
106 endif |
6964
|
107 m = 1:numel (k); |
|
108 multp(k) = m; |
|
109 indx = [indx; k]; |
|
110 n = find (multp == 0, 1); |
|
111 endwhile |
|
112 multp = multp(indx); |
6998
|
113 indx = ordr(indx); |
6964
|
114 |
|
115 endfunction |