7017
|
1 ## Copyright (C) 2004, 2006, 2007 Piotr Krzyzanowski |
5837
|
2 ## |
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
7016
|
7 ## the Free Software Foundation; either version 3 of the License, or (at |
|
8 ## your option) any later version. |
5837
|
9 ## |
|
10 ## Octave is distributed in the hope that it will be useful, but |
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 ## General Public License for more details. |
|
14 ## |
|
15 ## You should have received a copy of the GNU General Public License |
7016
|
16 ## along with Octave; see the file COPYING. If not, see |
|
17 ## <http://www.gnu.org/licenses/>. |
5837
|
18 |
|
19 ## -*- texinfo -*- |
6747
|
20 ## @deftypefn {Function File} {@var{x} =} pcg (@var{a}, @var{b}, @var{tol}, @var{maxit}, @var{m1}, @var{m2}, @var{x0}, @dots{}) |
5837
|
21 ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{}) |
|
22 ## |
5838
|
23 ## Solves the linear system of equations @code{@var{a} * @var{x} = |
5837
|
24 ## @var{b}} by means of the Preconditioned Conjugate Gradient iterative |
|
25 ## method. The input arguments are |
|
26 ## |
|
27 ## @itemize |
|
28 ## @item |
5838
|
29 ## @var{a} can be either a square (preferably sparse) matrix or a |
5837
|
30 ## function handle, inline function or string containing the name |
5838
|
31 ## of a function which computes @code{@var{a} * @var{x}}. In principle |
|
32 ## @var{a} should be symmetric and positive definite; if @code{pcg} |
|
33 ## finds @var{a} to not be positive definite, you will get a warning |
5837
|
34 ## message and the @var{flag} output parameter will be set. |
|
35 ## |
|
36 ## @item |
|
37 ## @var{b} is the right hand side vector. |
|
38 ## |
|
39 ## @item |
|
40 ## @var{tol} is the required relative tolerance for the residual error, |
5838
|
41 ## @code{@var{b} - @var{a} * @var{x}}. The iteration stops if @code{norm |
|
42 ## (@var{b} - @var{a} * @var{x}) <= @var{tol} * norm (@var{b} - @var{a} * |
5837
|
43 ## @var{x0})}. If @var{tol} is empty or is omitted, the function sets |
|
44 ## @code{@var{tol} = 1e-6} by default. |
|
45 ## |
|
46 ## @item |
|
47 ## @var{maxit} is the maximum allowable number of iterations; if |
|
48 ## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less |
|
49 ## arguments, a default value equal to 20 is used. |
|
50 ## |
|
51 ## @item |
6747
|
52 ## @var{m} = @var{m1} * @var{m2} is the (left) preconditioning matrix, so that the iteration is |
5837
|
53 ## (theoretically) equivalent to solving by @code{pcg} @code{@var{P} * |
5838
|
54 ## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{a}}. |
5837
|
55 ## Note that a proper choice of the preconditioner may dramatically |
6747
|
56 ## improve the overall performance of the method. Instead of matrices |
|
57 ## @var{m1} and @var{m2}, the user may pass two functions which return |
|
58 ## the results of applying the inverse of @var{m1} and @var{m2} to |
|
59 ## a vector (usually this is the preferred way of using the preconditioner). |
|
60 ## If @code{[]} is supplied for @var{m1}, or @var{m1} is omitted, no |
|
61 ## preconditioning is applied. If @var{m2} is omitted, @var{m} = @var{m1} |
|
62 ## will be used as preconditioner. |
5837
|
63 ## |
|
64 ## @item |
|
65 ## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the |
|
66 ## function sets @var{x0} to a zero vector by default. |
|
67 ## @end itemize |
|
68 ## |
|
69 ## The arguments which follow @var{x0} are treated as parameters, and |
5838
|
70 ## passed in a proper way to any of the functions (@var{a} or @var{m}) |
5837
|
71 ## which are passed to @code{pcg}. See the examples below for further |
|
72 ## details. The output arguments are |
|
73 ## |
|
74 ## @itemize |
|
75 ## @item |
|
76 ## @var{x} is the computed approximation to the solution of |
5838
|
77 ## @code{@var{a} * @var{x} = @var{b}}. |
5837
|
78 ## |
|
79 ## @item |
|
80 ## @var{flag} reports on the convergence. @code{@var{flag} = 0} means |
|
81 ## the solution converged and the tolerance criterion given by @var{tol} |
|
82 ## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit |
|
83 ## for the iteration count was reached. @code{@var{flag} = 3} reports that |
|
84 ## the (preconditioned) matrix was found not positive definite. |
|
85 ## |
|
86 ## @item |
|
87 ## @var{relres} is the ratio of the final residual to its initial value, |
|
88 ## measured in the Euclidean norm. |
|
89 ## |
|
90 ## @item |
|
91 ## @var{iter} is the actual number of iterations performed. |
|
92 ## |
|
93 ## @item |
|
94 ## @var{resvec} describes the convergence history of the method. |
|
95 ## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and |
|
96 ## @code{@var{resvec} (i,2)} is the preconditioned residual norm, |
|
97 ## after the (@var{i}-1)-th iteration, @code{@var{i} = |
6547
|
98 ## 1, 2, @dots{}, @var{iter}+1}. The preconditioned residual norm |
|
99 ## is defined as |
5838
|
100 ## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{m} \ @var{r})} where |
|
101 ## @code{@var{r} = @var{b} - @var{a} * @var{x}}, see also the |
|
102 ## description of @var{m}. If @var{eigest} is not required, only |
5837
|
103 ## @code{@var{resvec} (:,1)} is returned. |
|
104 ## |
|
105 ## @item |
|
106 ## @var{eigest} returns the estimate for the smallest @code{@var{eigest} |
|
107 ## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the |
5838
|
108 ## preconditioned matrix @code{@var{P} = @var{m} \ @var{a}}. In |
7007
|
109 ## particular, if no preconditioning is used, the estimates for the |
5838
|
110 ## extreme eigenvalues of @var{a} are returned. @code{@var{eigest} (1)} |
5837
|
111 ## is an overestimate and @code{@var{eigest} (2)} is an underestimate, |
|
112 ## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound |
|
113 ## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should |
|
114 ## theoretically be equal to the actual value of the condition number. |
|
115 ## The method which computes @var{eigest} works only for symmetric positive |
5838
|
116 ## definite @var{a} and @var{m}, and the user is responsible for |
5837
|
117 ## verifying this assumption. |
|
118 ## @end itemize |
|
119 ## |
|
120 ## Let us consider a trivial problem with a diagonal matrix (we exploit the |
|
121 ## sparsity of A) |
|
122 ## |
|
123 ## @example |
|
124 ## @group |
8507
|
125 ## n = 10; |
|
126 ## a = diag (sparse (1:n)); |
|
127 ## b = rand (n, 1); |
|
128 ## [l, u, p, q] = luinc (a, 1.e-3); |
5837
|
129 ## @end group |
|
130 ## @end example |
|
131 ## |
|
132 ## @sc{Example 1:} Simplest use of @code{pcg} |
|
133 ## |
|
134 ## @example |
|
135 ## x = pcg(A,b) |
|
136 ## @end example |
|
137 ## |
|
138 ## @sc{Example 2:} @code{pcg} with a function which computes |
5838
|
139 ## @code{@var{a} * @var{x}} |
5837
|
140 ## |
|
141 ## @example |
|
142 ## @group |
8507
|
143 ## function y = apply_a (x) |
5837
|
144 ## y = [1:N]'.*x; |
|
145 ## endfunction |
|
146 ## |
8507
|
147 ## x = pcg ("apply_a", b) |
5837
|
148 ## @end group |
|
149 ## @end example |
6747
|
150 ## |
|
151 ## @sc{Example 3:} @code{pcg} with a preconditioner: @var{l} * @var{u} |
|
152 ## |
|
153 ## @example |
8507
|
154 ## x = pcg (a, b, 1.e-6, 500, l*u); |
6747
|
155 ## @end example |
|
156 ## |
|
157 ## @sc{Example 4:} @code{pcg} with a preconditioner: @var{l} * @var{u}. |
|
158 ## Faster than @sc{Example 3} since lower and upper triangular matrices |
|
159 ## are easier to invert |
|
160 ## |
|
161 ## @example |
8507
|
162 ## x = pcg (a, b, 1.e-6, 500, l, u); |
6747
|
163 ## @end example |
|
164 ## |
|
165 ## @sc{Example 5:} Preconditioned iteration, with full diagnostics. The |
5837
|
166 ## preconditioner (quite strange, because even the original matrix |
5838
|
167 ## @var{a} is trivial) is defined as a function |
5837
|
168 ## |
|
169 ## @example |
|
170 ## @group |
8507
|
171 ## function y = apply_m (x) |
|
172 ## k = floor (length (x) - 2); |
6547
|
173 ## y = x; |
8507
|
174 ## y(1:k) = x(1:k)./[1:k]'; |
5837
|
175 ## endfunction |
|
176 ## |
7031
|
177 ## [x, flag, relres, iter, resvec, eigest] = ... |
8507
|
178 ## pcg (a, b, [], [], "apply_m"); |
6547
|
179 ## semilogy (1:iter+1, resvec); |
5837
|
180 ## @end group |
|
181 ## @end example |
|
182 ## |
6747
|
183 ## @sc{Example 6:} Finally, a preconditioner which depends on a |
5837
|
184 ## parameter @var{k}. |
|
185 ## |
|
186 ## @example |
|
187 ## @group |
8507
|
188 ## function y = apply_M (x, varargin) |
5837
|
189 ## K = varargin@{1@}; |
6547
|
190 ## y = x; |
|
191 ## y(1:K) = x(1:K)./[1:K]'; |
7007
|
192 ## endfunction |
5837
|
193 ## |
|
194 ## [x, flag, relres, iter, resvec, eigest] = ... |
8507
|
195 ## pcg (A, b, [], [], "apply_m", [], [], 3) |
5837
|
196 ## @end group |
|
197 ## @end example |
|
198 ## |
|
199 ## @sc{References} |
|
200 ## |
|
201 ## [1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations', |
|
202 ## SIAM, 1995 (the base PCG algorithm) |
|
203 ## |
|
204 ## [2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996 |
|
205 ## (condition number estimate from PCG) Revised version of this book is |
|
206 ## available online at http://www-users.cs.umn.edu/~saad/books.html |
|
207 ## |
|
208 ## |
|
209 ## @seealso{sparse, pcr} |
|
210 ## @end deftypefn |
|
211 |
5838
|
212 ## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl> |
6747
|
213 ## Modified by: Vittoria Rezzonico <vittoria.rezzonico@epfl.ch> |
|
214 ## - Add the ability to provide the pre-conditioner as two separate |
|
215 ## matrices |
5837
|
216 |
8507
|
217 function [x, flag, relres, iter, resvec, eigest] = pcg (a, b, tol, maxit, m1, m2, x0, varargin) |
5837
|
218 |
8507
|
219 ## M = M1*M2 |
6747
|
220 |
|
221 if (nargin < 7 || isempty (x0)) |
5838
|
222 x = zeros (size (b)); |
5837
|
223 else |
|
224 x = x0; |
|
225 endif |
|
226 |
8507
|
227 if (nargin < 5 || isempty (m1)) |
|
228 exist_m1 = 0; |
|
229 else |
|
230 exist_m1 = 1; |
|
231 endif |
6747
|
232 |
8507
|
233 if (nargin < 6 || isempty (m2)) |
|
234 exist_m2 = 0; |
|
235 else |
|
236 exist_m2 = 1; |
|
237 endif |
5837
|
238 |
5838
|
239 if (nargin < 4 || isempty (maxit)) |
|
240 maxit = min (size (b, 1), 20); |
5837
|
241 endif |
|
242 |
5838
|
243 maxit += 2; |
5837
|
244 |
5838
|
245 if (nargin < 3 || isempty (tol)) |
5837
|
246 tol = 1e-6; |
|
247 endif |
|
248 |
|
249 preconditioned_residual_out = false; |
|
250 if (nargout > 5) |
5838
|
251 T = zeros (maxit, maxit); |
5837
|
252 preconditioned_residual_out = true; |
|
253 endif |
|
254 |
8506
|
255 ## Assume A is positive definite. |
|
256 matrix_positive_definite = true; |
5837
|
257 |
5838
|
258 p = zeros (size (b)); |
5837
|
259 oldtau = 1; |
8507
|
260 if (isnumeric (a)) |
8506
|
261 ## A is a matrix. |
8507
|
262 r = b - a*x; |
8506
|
263 else |
|
264 ## A should be a function. |
8507
|
265 r = b - feval (a, x, varargin{:}); |
5837
|
266 endif |
|
267 |
5838
|
268 resvec(1,1) = norm (r); |
5837
|
269 alpha = 1; |
|
270 iter = 2; |
|
271 |
6747
|
272 while (resvec (iter-1,1) > tol * resvec (1,1) && iter < maxit) |
8507
|
273 if (exist_m1) |
|
274 if(isnumeric (m1)) |
|
275 y = m1 \ r; |
6747
|
276 else |
8507
|
277 y = feval (m1, r, varargin{:}); |
5837
|
278 endif |
6747
|
279 else |
|
280 y = r; |
|
281 endif |
8507
|
282 if (exist_m2) |
|
283 if (isnumeric (m2)) |
|
284 z = m2 \ y; |
6747
|
285 else |
8507
|
286 z = feval (m2, y, varargin{:}); |
6747
|
287 endif |
|
288 else |
|
289 z = y; |
5837
|
290 endif |
5838
|
291 tau = z' * r; |
6747
|
292 resvec (iter-1,2) = sqrt (tau); |
5838
|
293 beta = tau / oldtau; |
5837
|
294 oldtau = tau; |
6747
|
295 p = z + beta * p; |
8507
|
296 if (isnumeric (a)) |
8506
|
297 ## A is a matrix. |
8507
|
298 w = a * p; |
8506
|
299 else |
|
300 ## A should be a function. |
8507
|
301 w = feval (a, p, varargin{:}); |
5837
|
302 endif |
8506
|
303 ## Needed only for eigest. |
|
304 oldalpha = alpha; |
5838
|
305 alpha = tau / (p'*w); |
8506
|
306 if (alpha <= 0.0) |
|
307 ## Negative matrix. |
5837
|
308 matrix_positive_definite = false; |
|
309 endif |
6747
|
310 x += alpha * p; |
|
311 r -= alpha * w; |
5838
|
312 if (nargout > 5 && iter > 2) |
5837
|
313 T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ... |
|
314 [1 sqrt(beta); sqrt(beta) beta]./oldalpha; |
|
315 ## EVS = eig(T(2:iter-1,2:iter-1)); |
|
316 ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter); |
|
317 endif |
6747
|
318 resvec (iter,1) = norm (r); |
5838
|
319 iter++; |
5837
|
320 endwhile |
|
321 |
|
322 if (nargout > 5) |
5838
|
323 if (matrix_positive_definite) |
5837
|
324 if (iter > 3) |
|
325 T = T(2:iter-2,2:iter-2); |
6747
|
326 l = eig (T); |
5838
|
327 eigest = [min(l), max(l)]; |
6498
|
328 ## fprintf (stderr, "pcg condest: %g\n", eigest(2)/eigest(1)); |
5837
|
329 else |
5838
|
330 eigest = [NaN, NaN]; |
6498
|
331 warning ("pcg: eigenvalue estimate failed: iteration converged too fast."); |
5837
|
332 endif |
|
333 else |
5838
|
334 eigest = [NaN, NaN]; |
5837
|
335 endif |
|
336 |
8506
|
337 ## Apply the preconditioner once more and finish with the precond |
|
338 ## residual. |
8507
|
339 if (exist_m1) |
|
340 if (isnumeric (m1)) |
|
341 y = m1 \ r; |
6747
|
342 else |
8507
|
343 y = feval (m1, r, varargin{:}); |
5837
|
344 endif |
6747
|
345 else |
|
346 y = r; |
5837
|
347 endif |
8507
|
348 if (exist_m2) |
|
349 if (isnumeric (m2)) |
|
350 z = m2 \ y; |
6747
|
351 else |
8507
|
352 z = feval (m2, y, varargin{:}); |
6747
|
353 endif |
|
354 else |
|
355 z = y; |
|
356 endif |
|
357 |
|
358 resvec (iter-1,2) = sqrt (r' * z); |
5837
|
359 else |
5838
|
360 resvec = resvec(:,1); |
5837
|
361 endif |
|
362 |
|
363 flag = 0; |
6747
|
364 relres = resvec (iter-1,1) ./ resvec(1,1); |
5838
|
365 iter -= 2; |
6747
|
366 if (iter >= maxit - 2) |
5837
|
367 flag = 1; |
|
368 if (nargout < 2) |
6498
|
369 warning ("pcg: maximum number of iterations (%d) reached\n", iter); |
6747
|
370 warning ("the initial residual norm was reduced %g times.\n", ... |
|
371 1.0 / relres); |
5837
|
372 endif |
5838
|
373 elseif (nargout < 2) |
6498
|
374 fprintf (stderr, "pcg: converged in %d iterations. ", iter); |
|
375 fprintf (stderr, "the initial residual norm was reduced %g times.\n",... |
5838
|
376 1.0/relres); |
5837
|
377 endif |
|
378 |
5838
|
379 if (! matrix_positive_definite) |
5837
|
380 flag = 3; |
|
381 if (nargout < 2) |
6498
|
382 warning ("pcg: matrix not positive definite?\n"); |
5837
|
383 endif |
|
384 endif |
|
385 endfunction |
|
386 |
|
387 %!demo |
|
388 %! |
|
389 %! # Simplest usage of pcg (see also 'help pcg') |
|
390 %! |
|
391 %! N = 10; |
6747
|
392 %! A = diag ([1:N]); b = rand (N, 1); y = A \ b; #y is the true solution |
|
393 %! x = pcg (A, b); |
|
394 %! printf('The solution relative error is %g\n', norm (x - y) / norm (y)); |
5837
|
395 %! |
|
396 %! # You shouldn't be afraid if pcg issues some warning messages in this |
|
397 %! # example: watch out in the second example, why it takes N iterations |
|
398 %! # of pcg to converge to (a very accurate, by the way) solution |
|
399 %!demo |
|
400 %! |
|
401 %! # Full output from pcg, except for the eigenvalue estimates |
|
402 %! # We use this output to plot the convergence history |
|
403 %! |
|
404 %! N = 10; |
6747
|
405 %! A = diag ([1:N]); b = rand (N, 1); X = A \ b; #X is the true solution |
|
406 %! [x, flag, relres, iter, resvec] = pcg (A, b); |
|
407 %! printf('The solution relative error is %g\n', norm (x - X) / norm (X)); |
5837
|
408 %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)'); |
6747
|
409 %! semilogy([0:iter], resvec / resvec(1),'o-g'); |
|
410 %! legend('relative residual'); |
5837
|
411 %!demo |
|
412 %! |
|
413 %! # Full output from pcg, including the eigenvalue estimates |
|
414 %! # Hilbert matrix is extremely ill conditioned, so pcg WILL have problems |
|
415 %! |
|
416 %! N = 10; |
6747
|
417 %! A = hilb (N); b = rand (N, 1); X = A \ b; #X is the true solution |
|
418 %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], 200); |
|
419 %! printf('The solution relative error is %g\n', norm (x - X) / norm (X)); |
|
420 %! printf('Condition number estimate is %g\n', eigest(2) / eigest (1)); |
|
421 %! printf('Actual condition number is %g\n', cond (A)); |
5837
|
422 %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); |
6747
|
423 %! semilogy([0:iter], resvec,['o-g';'+-r']); |
|
424 %! legend('absolute residual','absolute preconditioned residual'); |
5837
|
425 %!demo |
|
426 %! |
|
427 %! # Full output from pcg, including the eigenvalue estimates |
|
428 %! # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2) |
|
429 %! # and that's the reasone we need some preconditioner; here we take |
|
430 %! # a very simple and not powerful Jacobi preconditioner, |
|
431 %! # which is the diagonal of A |
|
432 %! |
|
433 %! N = 100; |
6747
|
434 %! A = zeros (N, N); |
|
435 %! for i=1 : N - 1 # form 1-D Laplacian matrix |
|
436 %! A (i:i+1, i:i+1) = [2 -1; -1 2]; |
5837
|
437 %! endfor |
6747
|
438 %! b = rand (N, 1); X = A \ b; #X is the true solution |
5837
|
439 %! maxit = 80; |
6747
|
440 %! printf('System condition number is %g\n', cond (A)); |
5837
|
441 %! # No preconditioner: the convergence is very slow! |
|
442 %! |
6747
|
443 %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit); |
|
444 %! printf('System condition number estimate is %g\n', eigest(2) / eigest(1)); |
5837
|
445 %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); |
6747
|
446 %! semilogy([0:iter], resvec(:,1), 'o-g'); |
|
447 %! legend('NO preconditioning: absolute residual'); |
5837
|
448 %! |
|
449 %! pause(1); |
|
450 %! # Test Jacobi preconditioner: it will not help much!!! |
|
451 %! |
6747
|
452 %! M = diag (diag (A)); # Jacobi preconditioner |
|
453 %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M); |
|
454 %! printf('JACOBI preconditioned system condition number estimate is %g\n', eigest(2) / eigest(1)); |
5837
|
455 %! hold on; |
6747
|
456 %! semilogy([0:iter], resvec(:,1), 'o-r'); |
|
457 %! legend('NO preconditioning: absolute residual', ... |
|
458 %! 'JACOBI preconditioner: absolute residual'); |
5837
|
459 %! |
|
460 %! pause(1); |
|
461 %! # Test nonoverlapping block Jacobi preconditioner: it will help much! |
|
462 %! |
6747
|
463 %! M = zeros (N, N); k = 4; |
|
464 %! for i = 1 : k : N # form 1-D Laplacian matrix |
|
465 %! M (i:i+k-1, i:i+k-1) = A (i:i+k-1, i:i+k-1); |
5837
|
466 %! endfor |
6747
|
467 %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], maxit, M); |
|
468 %! printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n', eigest(2) / eigest(1)); |
|
469 %! semilogy ([0:iter], resvec(:,1),'o-b'); |
|
470 %! legend('NO preconditioning: absolute residual', ... |
|
471 %! 'JACOBI preconditioner: absolute residual', ... |
|
472 %! 'BLOCK JACOBI preconditioner: absolute residual'); |
5837
|
473 %! hold off; |
|
474 %!test |
|
475 %! |
|
476 %! #solve small diagonal system |
|
477 %! |
|
478 %! N = 10; |
6747
|
479 %! A = diag ([1:N]); b = rand (N, 1); X = A \ b; #X is the true solution |
|
480 %! [x, flag] = pcg (A, b, [], N+1); |
|
481 %! assert(norm (x - X) / norm (X), 0, 1e-10); |
|
482 %! assert(flag, 0); |
5837
|
483 %! |
|
484 %!test |
|
485 %! |
|
486 %! #solve small indefinite diagonal system |
|
487 %! #despite A is indefinite, the iteration continues and converges |
|
488 %! #indefiniteness of A is detected |
|
489 %! |
|
490 %! N = 10; |
6747
|
491 %! A = diag([1:N] .* (-ones(1, N) .^ 2)); b = rand (N, 1); X = A \ b; #X is the true solution |
|
492 %! [x, flag] = pcg (A, b, [], N+1); |
|
493 %! assert(norm (x - X) / norm (X), 0, 1e-10); |
|
494 %! assert(flag, 3); |
5837
|
495 %! |
|
496 %!test |
|
497 %! |
|
498 %! #solve tridiagonal system, do not converge in default 20 iterations |
|
499 %! |
|
500 %! N = 100; |
6747
|
501 %! A = zeros (N, N); |
|
502 %! for i = 1 : N - 1 # form 1-D Laplacian matrix |
|
503 %! A (i:i+1, i:i+1) = [2 -1; -1 2]; |
5837
|
504 %! endfor |
6747
|
505 %! b = ones (N, 1); X = A \ b; #X is the true solution |
|
506 %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, 1e-12); |
5837
|
507 %! assert(flag); |
6747
|
508 %! assert(relres > 1.0); |
|
509 %! assert(iter, 20); #should perform max allowable default number of iterations |
5837
|
510 %! |
|
511 %!test |
|
512 %! |
|
513 %! #solve tridiagonal system with 'prefect' preconditioner |
|
514 %! #converges in one iteration, so the eigest does not work |
|
515 %! #and issues a warning |
|
516 %! |
|
517 %! N = 100; |
6747
|
518 %! A = zeros (N, N); |
|
519 %! for i = 1 : N - 1 # form 1-D Laplacian matrix |
|
520 %! A (i:i+1, i:i+1) = [2 -1; -1 2]; |
5837
|
521 %! endfor |
6747
|
522 %! b = ones (N, 1); X = A \ b; #X is the true solution |
|
523 %! [x, flag, relres, iter, resvec, eigest] = pcg (A, b, [], [], A, [], b); |
|
524 %! assert(norm (x - X) / norm (X), 0, 1e-6); |
|
525 %! assert(flag, 0); |
|
526 %! assert(iter, 1); #should converge in one iteration |
|
527 %! assert(isnan (eigest), isnan ([NaN, NaN])); |
5837
|
528 %! |