3271
|
1 SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO ) |
|
2 * |
7034
|
3 * -- LAPACK routine (version 3.1) -- |
|
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. |
|
5 * November 2006 |
3271
|
6 * |
|
7 * .. Scalar Arguments .. |
|
8 CHARACTER UPLO |
|
9 INTEGER INFO, LDA, N |
|
10 * .. |
|
11 * .. Array Arguments .. |
|
12 DOUBLE PRECISION A( LDA, * ) |
|
13 * .. |
|
14 * |
|
15 * Purpose |
|
16 * ======= |
|
17 * |
|
18 * DPOTF2 computes the Cholesky factorization of a real symmetric |
|
19 * positive definite matrix A. |
|
20 * |
|
21 * The factorization has the form |
|
22 * A = U' * U , if UPLO = 'U', or |
|
23 * A = L * L', if UPLO = 'L', |
|
24 * where U is an upper triangular matrix and L is lower triangular. |
|
25 * |
|
26 * This is the unblocked version of the algorithm, calling Level 2 BLAS. |
|
27 * |
|
28 * Arguments |
|
29 * ========= |
|
30 * |
|
31 * UPLO (input) CHARACTER*1 |
|
32 * Specifies whether the upper or lower triangular part of the |
|
33 * symmetric matrix A is stored. |
|
34 * = 'U': Upper triangular |
|
35 * = 'L': Lower triangular |
|
36 * |
|
37 * N (input) INTEGER |
|
38 * The order of the matrix A. N >= 0. |
|
39 * |
|
40 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
|
41 * On entry, the symmetric matrix A. If UPLO = 'U', the leading |
|
42 * n by n upper triangular part of A contains the upper |
|
43 * triangular part of the matrix A, and the strictly lower |
|
44 * triangular part of A is not referenced. If UPLO = 'L', the |
|
45 * leading n by n lower triangular part of A contains the lower |
|
46 * triangular part of the matrix A, and the strictly upper |
|
47 * triangular part of A is not referenced. |
|
48 * |
|
49 * On exit, if INFO = 0, the factor U or L from the Cholesky |
|
50 * factorization A = U'*U or A = L*L'. |
|
51 * |
|
52 * LDA (input) INTEGER |
|
53 * The leading dimension of the array A. LDA >= max(1,N). |
|
54 * |
|
55 * INFO (output) INTEGER |
|
56 * = 0: successful exit |
|
57 * < 0: if INFO = -k, the k-th argument had an illegal value |
|
58 * > 0: if INFO = k, the leading minor of order k is not |
|
59 * positive definite, and the factorization could not be |
|
60 * completed. |
|
61 * |
|
62 * ===================================================================== |
|
63 * |
|
64 * .. Parameters .. |
|
65 DOUBLE PRECISION ONE, ZERO |
|
66 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
|
67 * .. |
|
68 * .. Local Scalars .. |
|
69 LOGICAL UPPER |
|
70 INTEGER J |
|
71 DOUBLE PRECISION AJJ |
|
72 * .. |
|
73 * .. External Functions .. |
|
74 LOGICAL LSAME |
|
75 DOUBLE PRECISION DDOT |
|
76 EXTERNAL LSAME, DDOT |
|
77 * .. |
|
78 * .. External Subroutines .. |
|
79 EXTERNAL DGEMV, DSCAL, XERBLA |
|
80 * .. |
|
81 * .. Intrinsic Functions .. |
|
82 INTRINSIC MAX, SQRT |
|
83 * .. |
|
84 * .. Executable Statements .. |
|
85 * |
|
86 * Test the input parameters. |
|
87 * |
|
88 INFO = 0 |
|
89 UPPER = LSAME( UPLO, 'U' ) |
|
90 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN |
|
91 INFO = -1 |
|
92 ELSE IF( N.LT.0 ) THEN |
|
93 INFO = -2 |
|
94 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN |
|
95 INFO = -4 |
|
96 END IF |
|
97 IF( INFO.NE.0 ) THEN |
|
98 CALL XERBLA( 'DPOTF2', -INFO ) |
|
99 RETURN |
|
100 END IF |
|
101 * |
|
102 * Quick return if possible |
|
103 * |
|
104 IF( N.EQ.0 ) |
|
105 $ RETURN |
|
106 * |
|
107 IF( UPPER ) THEN |
|
108 * |
|
109 * Compute the Cholesky factorization A = U'*U. |
|
110 * |
|
111 DO 10 J = 1, N |
|
112 * |
|
113 * Compute U(J,J) and test for non-positive-definiteness. |
|
114 * |
|
115 AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 ) |
|
116 IF( AJJ.LE.ZERO ) THEN |
|
117 A( J, J ) = AJJ |
|
118 GO TO 30 |
|
119 END IF |
|
120 AJJ = SQRT( AJJ ) |
|
121 A( J, J ) = AJJ |
|
122 * |
|
123 * Compute elements J+1:N of row J. |
|
124 * |
|
125 IF( J.LT.N ) THEN |
|
126 CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ), |
|
127 $ LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA ) |
|
128 CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA ) |
|
129 END IF |
|
130 10 CONTINUE |
|
131 ELSE |
|
132 * |
|
133 * Compute the Cholesky factorization A = L*L'. |
|
134 * |
|
135 DO 20 J = 1, N |
|
136 * |
|
137 * Compute L(J,J) and test for non-positive-definiteness. |
|
138 * |
|
139 AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ), |
|
140 $ LDA ) |
|
141 IF( AJJ.LE.ZERO ) THEN |
|
142 A( J, J ) = AJJ |
|
143 GO TO 30 |
|
144 END IF |
|
145 AJJ = SQRT( AJJ ) |
|
146 A( J, J ) = AJJ |
|
147 * |
|
148 * Compute elements J+1:N of column J. |
|
149 * |
|
150 IF( J.LT.N ) THEN |
|
151 CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ), |
|
152 $ LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 ) |
|
153 CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 ) |
|
154 END IF |
|
155 20 CONTINUE |
|
156 END IF |
|
157 GO TO 40 |
|
158 * |
|
159 30 CONTINUE |
|
160 INFO = J |
|
161 * |
|
162 40 CONTINUE |
|
163 RETURN |
|
164 * |
|
165 * End of DPOTF2 |
|
166 * |
|
167 END |