5683
|
1 /* |
|
2 |
7017
|
3 Copyright (C) 2006, 2007 David Bateman |
5683
|
4 |
7016
|
5 This file is part of Octave. |
|
6 |
5683
|
7 Octave is free software; you can redistribute it and/or modify it |
|
8 under the terms of the GNU General Public License as published by the |
7016
|
9 Free Software Foundation; either version 3 of the License, or (at your |
|
10 option) any later version. |
5683
|
11 |
|
12 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
15 for more details. |
|
16 |
|
17 You should have received a copy of the GNU General Public License |
7016
|
18 along with Octave; see the file COPYING. If not, see |
|
19 <http://www.gnu.org/licenses/>. |
5683
|
20 |
|
21 */ |
|
22 |
|
23 #ifdef HAVE_CONFIG_H |
|
24 #include <config.h> |
|
25 #endif |
|
26 |
5797
|
27 #include <vector> |
5794
|
28 |
5683
|
29 #include "MArray2.h" |
|
30 #include "MSparse.h" |
|
31 #include "SparseQR.h" |
|
32 #include "SparseCmplxQR.h" |
5785
|
33 #include "MatrixType.h" |
5683
|
34 #include "oct-sort.h" |
|
35 |
|
36 template <class T> |
|
37 static MSparse<T> |
|
38 dmsolve_extract (const MSparse<T> &A, const octave_idx_type *Pinv, |
|
39 const octave_idx_type *Q, octave_idx_type rst, |
|
40 octave_idx_type rend, octave_idx_type cst, |
|
41 octave_idx_type cend, octave_idx_type maxnz = -1, |
|
42 bool lazy = false) |
|
43 { |
|
44 octave_idx_type nz = (rend - rst) * (cend - cst); |
|
45 maxnz = (maxnz < 0 ? A.nnz () : maxnz); |
|
46 MSparse<T> B (rend - rst, cend - cst, (nz < maxnz ? nz : maxnz)); |
|
47 // Some sparse functions can support lazy indexing (where elements |
|
48 // in the row are in no particular order), even though octave in |
|
49 // general can't. For those functions that can using it is a big |
|
50 // win here in terms of speed. |
|
51 if (lazy) |
|
52 { |
|
53 nz = 0; |
|
54 for (octave_idx_type j = cst ; j < cend ; j++) |
|
55 { |
|
56 octave_idx_type qq = (Q ? Q [j] : j); |
|
57 B.xcidx (j - cst) = nz; |
|
58 for (octave_idx_type p = A.cidx(qq) ; p < A.cidx (qq+1) ; p++) |
|
59 { |
|
60 OCTAVE_QUIT; |
|
61 octave_idx_type r = (Pinv ? Pinv [A.ridx (p)] : A.ridx (p)); |
|
62 if (r >= rst && r < rend) |
|
63 { |
|
64 B.xdata (nz) = A.data (p); |
|
65 B.xridx (nz++) = r - rst ; |
|
66 } |
|
67 } |
|
68 } |
|
69 B.xcidx (cend - cst) = nz ; |
|
70 } |
|
71 else |
|
72 { |
|
73 OCTAVE_LOCAL_BUFFER (T, X, rend - rst); |
|
74 octave_sort<octave_idx_type> sort; |
|
75 octave_idx_type *ri = B.xridx(); |
|
76 nz = 0; |
|
77 for (octave_idx_type j = cst ; j < cend ; j++) |
|
78 { |
|
79 octave_idx_type qq = (Q ? Q [j] : j); |
|
80 B.xcidx (j - cst) = nz; |
|
81 for (octave_idx_type p = A.cidx(qq) ; p < A.cidx (qq+1) ; p++) |
|
82 { |
|
83 OCTAVE_QUIT; |
|
84 octave_idx_type r = (Pinv ? Pinv [A.ridx (p)] : A.ridx (p)); |
|
85 if (r >= rst && r < rend) |
|
86 { |
|
87 X [r-rst] = A.data (p); |
|
88 B.xridx (nz++) = r - rst ; |
|
89 } |
|
90 } |
|
91 sort.sort (ri + B.xcidx (j - cst), nz - B.xcidx (j - cst)); |
|
92 for (octave_idx_type p = B.cidx (j - cst); p < nz; p++) |
|
93 B.xdata (p) = X [B.xridx (p)]; |
|
94 } |
|
95 B.xcidx (cend - cst) = nz ; |
|
96 } |
|
97 |
|
98 return B; |
|
99 } |
|
100 |
|
101 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
102 static MSparse<double> |
|
103 dmsolve_extract (const MSparse<double> &A, const octave_idx_type *Pinv, |
|
104 const octave_idx_type *Q, octave_idx_type rst, |
|
105 octave_idx_type rend, octave_idx_type cst, |
|
106 octave_idx_type cend, octave_idx_type maxnz, |
|
107 bool lazy); |
|
108 |
|
109 static MSparse<Complex> |
|
110 dmsolve_extract (const MSparse<Complex> &A, const octave_idx_type *Pinv, |
|
111 const octave_idx_type *Q, octave_idx_type rst, |
|
112 octave_idx_type rend, octave_idx_type cst, |
|
113 octave_idx_type cend, octave_idx_type maxnz, |
|
114 bool lazy); |
|
115 #endif |
|
116 |
|
117 template <class T> |
|
118 static MArray2<T> |
|
119 dmsolve_extract (const MArray2<T> &m, const octave_idx_type *, |
|
120 const octave_idx_type *, octave_idx_type r1, |
|
121 octave_idx_type r2, octave_idx_type c1, |
|
122 octave_idx_type c2) |
|
123 { |
|
124 r2 -= 1; |
|
125 c2 -= 1; |
|
126 if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } |
|
127 if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } |
|
128 |
|
129 octave_idx_type new_r = r2 - r1 + 1; |
|
130 octave_idx_type new_c = c2 - c1 + 1; |
|
131 |
|
132 MArray2<T> result (new_r, new_c); |
|
133 |
|
134 for (octave_idx_type j = 0; j < new_c; j++) |
|
135 for (octave_idx_type i = 0; i < new_r; i++) |
|
136 result.xelem (i, j) = m.elem (r1+i, c1+j); |
|
137 |
|
138 return result; |
|
139 } |
|
140 |
|
141 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
142 static MArray2<double> |
|
143 dmsolve_extract (const MArray2<double> &m, const octave_idx_type *, |
|
144 const octave_idx_type *, octave_idx_type r1, |
|
145 octave_idx_type r2, octave_idx_type c1, |
|
146 octave_idx_type c2) |
|
147 |
|
148 static MArray2<Complex> |
|
149 dmsolve_extract (const MArray2<Complex> &m, const octave_idx_type *, |
|
150 const octave_idx_type *, octave_idx_type r1, |
|
151 octave_idx_type r2, octave_idx_type c1, |
|
152 octave_idx_type c2) |
|
153 #endif |
|
154 |
|
155 template <class T> |
|
156 static void |
|
157 dmsolve_insert (MArray2<T> &a, const MArray2<T> &b, const octave_idx_type *Q, |
|
158 octave_idx_type r, octave_idx_type c) |
|
159 { |
|
160 T *ax = a.fortran_vec(); |
|
161 const T *bx = b.fortran_vec(); |
|
162 octave_idx_type anr = a.rows(); |
|
163 octave_idx_type nr = b.rows(); |
|
164 octave_idx_type nc = b.cols(); |
|
165 for (octave_idx_type j = 0; j < nc; j++) |
|
166 { |
|
167 octave_idx_type aoff = (c + j) * anr; |
|
168 octave_idx_type boff = j * nr; |
|
169 for (octave_idx_type i = 0; i < nr; i++) |
|
170 { |
|
171 OCTAVE_QUIT; |
|
172 ax [Q [r + i] + aoff] = bx [i + boff]; |
|
173 } |
|
174 } |
|
175 } |
|
176 |
|
177 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
178 static void |
|
179 dmsolve_insert (MArray2<double> &a, const MArray2<double> &b, |
|
180 const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); |
|
181 |
|
182 static void |
|
183 dmsolve_insert (MArray2<Complex> &a, const MArray2<Complex> &b, |
|
184 const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); |
|
185 #endif |
|
186 |
|
187 template <class T> |
|
188 static void |
|
189 dmsolve_insert (MSparse<T> &a, const MSparse<T> &b, const octave_idx_type *Q, |
|
190 octave_idx_type r, octave_idx_type c) |
|
191 { |
|
192 octave_idx_type b_rows = b.rows (); |
|
193 octave_idx_type b_cols = b.cols (); |
|
194 octave_idx_type nr = a.rows (); |
|
195 octave_idx_type nc = a.cols (); |
|
196 |
|
197 OCTAVE_LOCAL_BUFFER (octave_idx_type, Qinv, nr); |
|
198 for (octave_idx_type i = 0; i < nr; i++) |
|
199 Qinv [Q [i]] = i; |
|
200 |
|
201 // First count the number of elements in the final array |
|
202 octave_idx_type nel = a.xcidx(c) + b.nnz (); |
|
203 |
|
204 if (c + b_cols < nc) |
|
205 nel += a.xcidx(nc) - a.xcidx(c + b_cols); |
|
206 |
|
207 for (octave_idx_type i = c; i < c + b_cols; i++) |
|
208 for (octave_idx_type j = a.xcidx(i); j < a.xcidx(i+1); j++) |
|
209 if (Qinv [a.xridx(j)] < r || Qinv [a.xridx(j)] >= r + b_rows) |
|
210 nel++; |
|
211 |
|
212 OCTAVE_LOCAL_BUFFER (T, X, nr); |
|
213 octave_sort<octave_idx_type> sort; |
|
214 MSparse<T> tmp (a); |
|
215 a = MSparse<T> (nr, nc, nel); |
|
216 octave_idx_type *ri = a.xridx(); |
|
217 |
|
218 for (octave_idx_type i = 0; i < tmp.cidx(c); i++) |
|
219 { |
|
220 a.xdata(i) = tmp.xdata(i); |
|
221 a.xridx(i) = tmp.xridx(i); |
|
222 } |
|
223 for (octave_idx_type i = 0; i < c + 1; i++) |
|
224 a.xcidx(i) = tmp.xcidx(i); |
|
225 |
|
226 octave_idx_type ii = a.xcidx(c); |
|
227 |
|
228 for (octave_idx_type i = c; i < c + b_cols; i++) |
|
229 { |
|
230 OCTAVE_QUIT; |
|
231 |
|
232 for (octave_idx_type j = tmp.xcidx(i); j < tmp.xcidx(i+1); j++) |
|
233 if (Qinv [tmp.xridx(j)] < r || Qinv [tmp.xridx(j)] >= r + b_rows) |
|
234 { |
|
235 X [tmp.xridx(j)] = tmp.xdata(j); |
|
236 a.xridx(ii++) = tmp.xridx(j); |
|
237 } |
|
238 |
|
239 OCTAVE_QUIT; |
|
240 |
|
241 for (octave_idx_type j = b.cidx(i-c); j < b.cidx(i-c+1); j++) |
|
242 { |
|
243 X [Q [r + b.ridx(j)]] = b.data(j); |
|
244 a.xridx(ii++) = Q [r + b.ridx(j)]; |
|
245 } |
|
246 |
|
247 sort.sort (ri + a.xcidx (i), ii - a.xcidx (i)); |
|
248 for (octave_idx_type p = a.xcidx (i); p < ii; p++) |
|
249 a.xdata (p) = X [a.xridx (p)]; |
|
250 a.xcidx(i+1) = ii; |
|
251 } |
|
252 |
|
253 for (octave_idx_type i = c + b_cols; i < nc; i++) |
|
254 { |
|
255 for (octave_idx_type j = tmp.xcidx(i); j < tmp.cidx(i+1); j++) |
|
256 { |
|
257 a.xdata(ii) = tmp.xdata(j); |
|
258 a.xridx(ii++) = tmp.xridx(j); |
|
259 } |
|
260 a.xcidx(i+1) = ii; |
|
261 } |
|
262 } |
|
263 |
|
264 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
265 static void |
|
266 dmsolve_insert (MSparse<double> &a, const SparseMatrix &b, |
|
267 const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); |
|
268 |
|
269 static void |
|
270 dmsolve_insert (MSparse<Complex> &a, const MSparse<Complex> &b, |
|
271 const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); |
|
272 #endif |
|
273 |
|
274 template <class T, class RT> |
|
275 static void |
|
276 dmsolve_permute (MArray2<RT> &a, const MArray2<T>& b, const octave_idx_type *p) |
|
277 { |
|
278 octave_idx_type b_nr = b.rows (); |
|
279 octave_idx_type b_nc = b.cols (); |
|
280 const T *Bx = b.fortran_vec(); |
|
281 a.resize(b_nr, b_nc); |
|
282 RT *Btx = a.fortran_vec(); |
|
283 for (octave_idx_type j = 0; j < b_nc; j++) |
|
284 { |
|
285 octave_idx_type off = j * b_nr; |
|
286 for (octave_idx_type i = 0; i < b_nr; i++) |
|
287 { |
|
288 OCTAVE_QUIT; |
|
289 Btx [p [i] + off] = Bx [ i + off]; |
|
290 } |
|
291 } |
|
292 } |
|
293 |
|
294 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
295 static void |
|
296 dmsolve_permute (MArray2<double> &a, const MArray2<double>& b, |
|
297 const octave_idx_type *p); |
|
298 |
|
299 static void |
|
300 dmsolve_permute (MArray2<Complex> &a, const MArray2<double>& b, |
|
301 const octave_idx_type *p); |
|
302 |
|
303 static void |
|
304 dmsolve_permute (MArray2<Complex> &a, const MArray2<Complex>& b, |
|
305 const octave_idx_type *p); |
|
306 #endif |
|
307 |
|
308 template <class T, class RT> |
|
309 static void |
|
310 dmsolve_permute (MSparse<RT> &a, const MSparse<T>& b, const octave_idx_type *p) |
|
311 { |
|
312 octave_idx_type b_nr = b.rows (); |
|
313 octave_idx_type b_nc = b.cols (); |
|
314 octave_idx_type b_nz = b.nnz (); |
|
315 octave_idx_type nz = 0; |
|
316 a = MSparse<RT> (b_nr, b_nc, b_nz); |
|
317 octave_sort<octave_idx_type> sort; |
|
318 octave_idx_type *ri = a.xridx(); |
|
319 OCTAVE_LOCAL_BUFFER (RT, X, b_nr); |
|
320 a.xcidx(0) = 0; |
|
321 for (octave_idx_type j = 0; j < b_nc; j++) |
|
322 { |
|
323 for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) |
|
324 { |
|
325 OCTAVE_QUIT; |
|
326 octave_idx_type r = p [b.ridx (i)]; |
|
327 X [r] = b.data (i); |
|
328 a.xridx(nz++) = p [b.ridx (i)]; |
|
329 } |
|
330 sort.sort (ri + a.xcidx (j), nz - a.xcidx (j)); |
|
331 for (octave_idx_type i = a.cidx (j); i < nz; i++) |
|
332 { |
|
333 OCTAVE_QUIT; |
|
334 a.xdata (i) = X [a.xridx (i)]; |
|
335 } |
|
336 a.xcidx(j+1) = nz; |
|
337 } |
|
338 } |
|
339 |
|
340 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
341 static void |
|
342 dmsolve_permute (MSparse<double> &a, const MSparse<double>& b, |
|
343 const octave_idx_type *p); |
|
344 |
|
345 static void |
|
346 dmsolve_permute (MSparse<Complex> &a, const MSparse<double>& b, |
|
347 const octave_idx_type *p); |
|
348 |
|
349 static void |
|
350 dmsolve_permute (MSparse<Complex> &a, const MSparse<Complex>& b, |
|
351 const octave_idx_type *p); |
|
352 #endif |
|
353 |
|
354 static void |
|
355 solve_singularity_warning (double) |
|
356 { |
|
357 // Dummy singularity handler so that LU solver doesn't flag |
|
358 // an error for numerically rank defficient matrices |
|
359 } |
|
360 |
|
361 template <class RT, class ST, class T> |
|
362 RT |
|
363 dmsolve (const ST &a, const T &b, octave_idx_type &info) |
|
364 { |
5684
|
365 #ifdef HAVE_CXSPARSE |
5683
|
366 octave_idx_type nr = a.rows (); |
|
367 octave_idx_type nc = a.cols (); |
|
368 octave_idx_type b_nr = b.rows (); |
|
369 octave_idx_type b_nc = b.cols (); |
|
370 RT retval; |
|
371 |
6924
|
372 if (nr < 0 || nc < 0 || nr != b_nr) |
5683
|
373 (*current_liboctave_error_handler) |
|
374 ("matrix dimension mismatch in solution of minimum norm problem"); |
6924
|
375 else if (nr == 0 || nc == 0 || b_nc == 0) |
|
376 retval = RT (nc, b_nc, 0.0); |
5683
|
377 else |
|
378 { |
|
379 octave_idx_type nnz_remaining = a.nnz (); |
|
380 CXSPARSE_DNAME () csm; |
|
381 csm.m = nr; |
|
382 csm.n = nc; |
7520
|
383 csm.x = 0; |
5683
|
384 csm.nz = -1; |
|
385 csm.nzmax = a.nnz (); |
|
386 // Cast away const on A, with full knowledge that CSparse won't touch it. |
|
387 // Prevents the methods below making a copy of the data. |
|
388 csm.p = const_cast<octave_idx_type *>(a.cidx ()); |
|
389 csm.i = const_cast<octave_idx_type *>(a.ridx ()); |
|
390 |
5792
|
391 #if defined(CS_VER) && (CS_VER >= 2) |
|
392 CXSPARSE_DNAME (d) *dm = CXSPARSE_DNAME(_dmperm) (&csm, 0); |
|
393 octave_idx_type *p = dm->p; |
|
394 octave_idx_type *q = dm->q; |
|
395 #else |
5683
|
396 CXSPARSE_DNAME (d) *dm = CXSPARSE_DNAME(_dmperm) (&csm); |
|
397 octave_idx_type *p = dm->P; |
|
398 octave_idx_type *q = dm->Q; |
5792
|
399 #endif |
5683
|
400 OCTAVE_LOCAL_BUFFER (octave_idx_type, pinv, nr); |
|
401 for (octave_idx_type i = 0; i < nr; i++) |
|
402 pinv [p [i]] = i; |
|
403 RT btmp; |
|
404 dmsolve_permute (btmp, b, pinv); |
|
405 info = 0; |
|
406 retval.resize (nc, b_nc); |
|
407 |
|
408 // Leading over-determined block |
|
409 if (dm->rr [2] < nr && dm->cc [3] < nc) |
|
410 { |
|
411 ST m = dmsolve_extract (a, pinv, q, dm->rr [2], nr, dm->cc [3], nc, |
|
412 nnz_remaining, true); |
|
413 nnz_remaining -= m.nnz(); |
|
414 RT mtmp = |
7520
|
415 qrsolve (m, dmsolve_extract (btmp, 0, 0, dm->rr[2], b_nr, 0, |
5683
|
416 b_nc), info); |
|
417 dmsolve_insert (retval, mtmp, q, dm->cc [3], 0); |
5797
|
418 if (dm->rr [2] > 0 && !info) |
5683
|
419 { |
|
420 m = dmsolve_extract (a, pinv, q, 0, dm->rr [2], |
|
421 dm->cc [3], nc, nnz_remaining, true); |
|
422 nnz_remaining -= m.nnz(); |
7520
|
423 RT ctmp = dmsolve_extract (btmp, 0, 0, 0, |
5683
|
424 dm->rr[2], 0, b_nc); |
|
425 btmp.insert (ctmp - m * mtmp, 0, 0); |
|
426 } |
|
427 } |
|
428 |
|
429 // Structurally non-singular blocks |
5775
|
430 // FIXME Should use fine Dulmange-Mendelsohn decomposition here. |
5797
|
431 if (dm->rr [1] < dm->rr [2] && dm->cc [2] < dm->cc [3] && !info) |
5683
|
432 { |
|
433 ST m = dmsolve_extract (a, pinv, q, dm->rr [1], dm->rr [2], |
|
434 dm->cc [2], dm->cc [3], nnz_remaining, false); |
|
435 nnz_remaining -= m.nnz(); |
7520
|
436 RT btmp2 = dmsolve_extract (btmp, 0, 0, dm->rr [1], dm->rr [2], |
5683
|
437 0, b_nc); |
|
438 double rcond = 0.0; |
5785
|
439 MatrixType mtyp (MatrixType::Full); |
5683
|
440 RT mtmp = m.solve (mtyp, btmp2, info, rcond, |
5697
|
441 solve_singularity_warning, false); |
5683
|
442 if (info != 0) |
|
443 { |
|
444 info = 0; |
|
445 mtmp = qrsolve (m, btmp2, info); |
|
446 } |
|
447 |
|
448 dmsolve_insert (retval, mtmp, q, dm->cc [2], 0); |
5797
|
449 if (dm->rr [1] > 0 && !info) |
5683
|
450 { |
|
451 m = dmsolve_extract (a, pinv, q, 0, dm->rr [1], dm->cc [2], |
|
452 dm->cc [3], nnz_remaining, true); |
|
453 nnz_remaining -= m.nnz(); |
7520
|
454 RT ctmp = dmsolve_extract (btmp, 0, 0, 0, |
5683
|
455 dm->rr[1], 0, b_nc); |
|
456 btmp.insert (ctmp - m * mtmp, 0, 0); |
|
457 } |
|
458 } |
|
459 |
|
460 // Trailing under-determined block |
5797
|
461 if (dm->rr [1] > 0 && dm->cc [2] > 0 && !info) |
5683
|
462 { |
|
463 ST m = dmsolve_extract (a, pinv, q, 0, dm->rr [1], 0, |
|
464 dm->cc [2], nnz_remaining, true); |
|
465 RT mtmp = |
7520
|
466 qrsolve (m, dmsolve_extract(btmp, 0, 0, 0, dm->rr [1] , 0, |
5683
|
467 b_nc), info); |
|
468 dmsolve_insert (retval, mtmp, q, 0, 0); |
|
469 } |
|
470 |
|
471 CXSPARSE_DNAME (_dfree) (dm); |
|
472 } |
|
473 return retval; |
5684
|
474 #else |
|
475 return RT (); |
|
476 #endif |
5683
|
477 } |
|
478 |
|
479 #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) |
|
480 extern Matrix |
|
481 dmsolve (const SparseMatrix &a, const Matrix &b, |
|
482 octave_idx_type &info); |
|
483 |
|
484 extern ComplexMatrix |
|
485 dmsolve (const SparseMatrix &a, const ComplexMatrix &b, |
|
486 octave_idx_type &info); |
|
487 |
|
488 extern ComplexMatrix |
|
489 dmsolve (const SparseComplexMatrix &a, const Matrix &b, |
|
490 octave_idx_type &info); |
|
491 |
|
492 extern ComplexMatrix |
|
493 dmsolve (const SparseComplexMatrix &a, const ComplexMatrix &b, |
|
494 octave_idx_type &info); |
|
495 |
|
496 extern SparseMatrix |
|
497 dmsolve (const SparseMatrix &a, const SparseMatrix &b, |
|
498 octave_idx_type &info); |
|
499 |
|
500 extern SparseComplexMatrix |
|
501 dmsolve (const SparseMatrix &a, const SparseComplexMatrix &b, |
|
502 octave_idx_type &info); |
|
503 |
|
504 extern SparseComplexMatrix |
|
505 dmsolve (const SparseComplexMatrix &a, const SparseMatrix &b, |
|
506 octave_idx_type &info); |
|
507 |
|
508 extern SparseComplexMatrix |
|
509 dmsolve (const SparseComplexMatrix &a, const SparseComplexMatrix &b, |
|
510 octave_idx_type &info); |
|
511 #endif |
|
512 |
|
513 /* |
|
514 ;;; Local Variables: *** |
|
515 ;;; mode: C++ *** |
|
516 ;;; End: *** |
|
517 */ |