Mercurial > hg > octave-nkf
annotate scripts/elfun/cotd.m @ 13894:d4404589498c
pascal.m: permutation compatibility with Matlab for n=2; fixed n=0 case (Bug #34365)
* pascal.m: permutation compatibility with Matlab for n=2; fixed n=0 case (Bug #34365)
author | Vanya Sergeev <vsergeev@gmail.com> |
---|---|
date | Fri, 23 Sep 2011 05:13:01 -0400 |
parents | fd0a3ac60b0e |
children | 72c96de7a403 |
rev | line source |
---|---|
11523 | 1 ## Copyright (C) 2006-2011 David Bateman |
6239 | 2 ## |
6440 | 3 ## This file is part of Octave. |
6239 | 4 ## |
6440 | 5 ## Octave is free software; you can redistribute it and/or modify it |
6 ## under the terms of the GNU General Public License as published by | |
7016 | 7 ## the Free Software Foundation; either version 3 of the License, or (at |
8 ## your option) any later version. | |
6440 | 9 ## |
10 ## Octave is distributed in the hope that it will be useful, but | |
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 ## General Public License for more details. | |
6239 | 14 ## |
15 ## You should have received a copy of the GNU General Public License | |
7016 | 16 ## along with Octave; see the file COPYING. If not, see |
17 ## <http://www.gnu.org/licenses/>. | |
6239 | 18 |
19 ## -*- texinfo -*- | |
20 ## @deftypefn {Function File} {} cotd (@var{x}) | |
9155
ad20b967e1c9
Update section 17.3 (Trigonometry) of arith.txi
Rik <rdrider0-list@yahoo.com>
parents:
7017
diff
changeset
|
21 ## Compute the cotangent for each element of @var{x} in degrees. |
ad20b967e1c9
Update section 17.3 (Trigonometry) of arith.txi
Rik <rdrider0-list@yahoo.com>
parents:
7017
diff
changeset
|
22 ## @seealso{acotd, cot} |
6239 | 23 ## @end deftypefn |
24 | |
7017 | 25 ## Author: David Bateman <dbateman@free.fr> |
26 | |
6239 | 27 function y = cotd (x) |
28 if (nargin != 1) | |
29 print_usage (); | |
30 endif | |
31 y = 1 ./ tand (x); | |
32 endfunction | |
33 | |
34 %!error(cotd()) | |
35 %!error(cotd(1,2)) | |
36 %!assert(cotd(10:10:80),cot(pi*[10:10:80]/180),-10*eps) | |
37 %!assert(cotd([0,180,360]) == Inf) | |
38 %!assert(cotd([90,270]) == 0) |