2329
|
1 SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, |
|
2 $ BETA, Y, INCY ) |
|
3 * .. Scalar Arguments .. |
|
4 DOUBLE PRECISION ALPHA, BETA |
|
5 INTEGER INCX, INCY, LDA, M, N |
|
6 CHARACTER*1 TRANS |
|
7 * .. Array Arguments .. |
|
8 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) |
|
9 * .. |
|
10 * |
|
11 * Purpose |
|
12 * ======= |
|
13 * |
|
14 * DGEMV performs one of the matrix-vector operations |
|
15 * |
|
16 * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
|
17 * |
|
18 * where alpha and beta are scalars, x and y are vectors and A is an |
|
19 * m by n matrix. |
|
20 * |
|
21 * Parameters |
|
22 * ========== |
|
23 * |
|
24 * TRANS - CHARACTER*1. |
|
25 * On entry, TRANS specifies the operation to be performed as |
|
26 * follows: |
|
27 * |
|
28 * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
|
29 * |
|
30 * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
|
31 * |
|
32 * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
|
33 * |
|
34 * Unchanged on exit. |
|
35 * |
|
36 * M - INTEGER. |
|
37 * On entry, M specifies the number of rows of the matrix A. |
|
38 * M must be at least zero. |
|
39 * Unchanged on exit. |
|
40 * |
|
41 * N - INTEGER. |
|
42 * On entry, N specifies the number of columns of the matrix A. |
|
43 * N must be at least zero. |
|
44 * Unchanged on exit. |
|
45 * |
|
46 * ALPHA - DOUBLE PRECISION. |
|
47 * On entry, ALPHA specifies the scalar alpha. |
|
48 * Unchanged on exit. |
|
49 * |
|
50 * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). |
|
51 * Before entry, the leading m by n part of the array A must |
|
52 * contain the matrix of coefficients. |
|
53 * Unchanged on exit. |
|
54 * |
|
55 * LDA - INTEGER. |
|
56 * On entry, LDA specifies the first dimension of A as declared |
|
57 * in the calling (sub) program. LDA must be at least |
|
58 * max( 1, m ). |
|
59 * Unchanged on exit. |
|
60 * |
|
61 * X - DOUBLE PRECISION array of DIMENSION at least |
|
62 * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
|
63 * and at least |
|
64 * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
|
65 * Before entry, the incremented array X must contain the |
|
66 * vector x. |
|
67 * Unchanged on exit. |
|
68 * |
|
69 * INCX - INTEGER. |
|
70 * On entry, INCX specifies the increment for the elements of |
|
71 * X. INCX must not be zero. |
|
72 * Unchanged on exit. |
|
73 * |
|
74 * BETA - DOUBLE PRECISION. |
|
75 * On entry, BETA specifies the scalar beta. When BETA is |
|
76 * supplied as zero then Y need not be set on input. |
|
77 * Unchanged on exit. |
|
78 * |
|
79 * Y - DOUBLE PRECISION array of DIMENSION at least |
|
80 * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
|
81 * and at least |
|
82 * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
|
83 * Before entry with BETA non-zero, the incremented array Y |
|
84 * must contain the vector y. On exit, Y is overwritten by the |
|
85 * updated vector y. |
|
86 * |
|
87 * INCY - INTEGER. |
|
88 * On entry, INCY specifies the increment for the elements of |
|
89 * Y. INCY must not be zero. |
|
90 * Unchanged on exit. |
|
91 * |
|
92 * |
|
93 * Level 2 Blas routine. |
|
94 * |
|
95 * -- Written on 22-October-1986. |
|
96 * Jack Dongarra, Argonne National Lab. |
|
97 * Jeremy Du Croz, Nag Central Office. |
|
98 * Sven Hammarling, Nag Central Office. |
|
99 * Richard Hanson, Sandia National Labs. |
|
100 * |
|
101 * |
|
102 * .. Parameters .. |
|
103 DOUBLE PRECISION ONE , ZERO |
|
104 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
|
105 * .. Local Scalars .. |
|
106 DOUBLE PRECISION TEMP |
|
107 INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY |
|
108 * .. External Functions .. |
|
109 LOGICAL LSAME |
|
110 EXTERNAL LSAME |
|
111 * .. External Subroutines .. |
|
112 EXTERNAL XERBLA |
|
113 * .. Intrinsic Functions .. |
|
114 INTRINSIC MAX |
|
115 * .. |
|
116 * .. Executable Statements .. |
|
117 * |
|
118 * Test the input parameters. |
|
119 * |
|
120 INFO = 0 |
|
121 IF ( .NOT.LSAME( TRANS, 'N' ).AND. |
|
122 $ .NOT.LSAME( TRANS, 'T' ).AND. |
|
123 $ .NOT.LSAME( TRANS, 'C' ) )THEN |
|
124 INFO = 1 |
|
125 ELSE IF( M.LT.0 )THEN |
|
126 INFO = 2 |
|
127 ELSE IF( N.LT.0 )THEN |
|
128 INFO = 3 |
|
129 ELSE IF( LDA.LT.MAX( 1, M ) )THEN |
|
130 INFO = 6 |
|
131 ELSE IF( INCX.EQ.0 )THEN |
|
132 INFO = 8 |
|
133 ELSE IF( INCY.EQ.0 )THEN |
|
134 INFO = 11 |
|
135 END IF |
|
136 IF( INFO.NE.0 )THEN |
|
137 CALL XERBLA( 'DGEMV ', INFO ) |
|
138 RETURN |
|
139 END IF |
|
140 * |
|
141 * Quick return if possible. |
|
142 * |
|
143 IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. |
|
144 $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) |
|
145 $ RETURN |
|
146 * |
|
147 * Set LENX and LENY, the lengths of the vectors x and y, and set |
|
148 * up the start points in X and Y. |
|
149 * |
|
150 IF( LSAME( TRANS, 'N' ) )THEN |
|
151 LENX = N |
|
152 LENY = M |
|
153 ELSE |
|
154 LENX = M |
|
155 LENY = N |
|
156 END IF |
|
157 IF( INCX.GT.0 )THEN |
|
158 KX = 1 |
|
159 ELSE |
|
160 KX = 1 - ( LENX - 1 )*INCX |
|
161 END IF |
|
162 IF( INCY.GT.0 )THEN |
|
163 KY = 1 |
|
164 ELSE |
|
165 KY = 1 - ( LENY - 1 )*INCY |
|
166 END IF |
|
167 * |
|
168 * Start the operations. In this version the elements of A are |
|
169 * accessed sequentially with one pass through A. |
|
170 * |
|
171 * First form y := beta*y. |
|
172 * |
|
173 IF( BETA.NE.ONE )THEN |
|
174 IF( INCY.EQ.1 )THEN |
|
175 IF( BETA.EQ.ZERO )THEN |
|
176 DO 10, I = 1, LENY |
|
177 Y( I ) = ZERO |
|
178 10 CONTINUE |
|
179 ELSE |
|
180 DO 20, I = 1, LENY |
|
181 Y( I ) = BETA*Y( I ) |
|
182 20 CONTINUE |
|
183 END IF |
|
184 ELSE |
|
185 IY = KY |
|
186 IF( BETA.EQ.ZERO )THEN |
|
187 DO 30, I = 1, LENY |
|
188 Y( IY ) = ZERO |
|
189 IY = IY + INCY |
|
190 30 CONTINUE |
|
191 ELSE |
|
192 DO 40, I = 1, LENY |
|
193 Y( IY ) = BETA*Y( IY ) |
|
194 IY = IY + INCY |
|
195 40 CONTINUE |
|
196 END IF |
|
197 END IF |
|
198 END IF |
|
199 IF( ALPHA.EQ.ZERO ) |
|
200 $ RETURN |
|
201 IF( LSAME( TRANS, 'N' ) )THEN |
|
202 * |
|
203 * Form y := alpha*A*x + y. |
|
204 * |
|
205 JX = KX |
|
206 IF( INCY.EQ.1 )THEN |
|
207 DO 60, J = 1, N |
|
208 IF( X( JX ).NE.ZERO )THEN |
|
209 TEMP = ALPHA*X( JX ) |
|
210 DO 50, I = 1, M |
|
211 Y( I ) = Y( I ) + TEMP*A( I, J ) |
|
212 50 CONTINUE |
|
213 END IF |
|
214 JX = JX + INCX |
|
215 60 CONTINUE |
|
216 ELSE |
|
217 DO 80, J = 1, N |
|
218 IF( X( JX ).NE.ZERO )THEN |
|
219 TEMP = ALPHA*X( JX ) |
|
220 IY = KY |
|
221 DO 70, I = 1, M |
|
222 Y( IY ) = Y( IY ) + TEMP*A( I, J ) |
|
223 IY = IY + INCY |
|
224 70 CONTINUE |
|
225 END IF |
|
226 JX = JX + INCX |
|
227 80 CONTINUE |
|
228 END IF |
|
229 ELSE |
|
230 * |
|
231 * Form y := alpha*A'*x + y. |
|
232 * |
|
233 JY = KY |
|
234 IF( INCX.EQ.1 )THEN |
|
235 DO 100, J = 1, N |
|
236 TEMP = ZERO |
|
237 DO 90, I = 1, M |
|
238 TEMP = TEMP + A( I, J )*X( I ) |
|
239 90 CONTINUE |
|
240 Y( JY ) = Y( JY ) + ALPHA*TEMP |
|
241 JY = JY + INCY |
|
242 100 CONTINUE |
|
243 ELSE |
|
244 DO 120, J = 1, N |
|
245 TEMP = ZERO |
|
246 IX = KX |
|
247 DO 110, I = 1, M |
|
248 TEMP = TEMP + A( I, J )*X( IX ) |
|
249 IX = IX + INCX |
|
250 110 CONTINUE |
|
251 Y( JY ) = Y( JY ) + ALPHA*TEMP |
|
252 JY = JY + INCY |
|
253 120 CONTINUE |
|
254 END IF |
|
255 END IF |
|
256 * |
|
257 RETURN |
|
258 * |
|
259 * End of DGEMV . |
|
260 * |
|
261 END |