2329
|
1 SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) |
|
2 * |
3333
|
3 * -- LAPACK routine (version 3.0) -- |
2329
|
4 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., |
|
5 * Courant Institute, Argonne National Lab, and Rice University |
|
6 * March 31, 1993 |
|
7 * |
|
8 * .. Scalar Arguments .. |
|
9 CHARACTER TRANS |
|
10 INTEGER INFO, LDA, LDB, N, NRHS |
|
11 * .. |
|
12 * .. Array Arguments .. |
|
13 INTEGER IPIV( * ) |
|
14 DOUBLE PRECISION A( LDA, * ), B( LDB, * ) |
|
15 * .. |
|
16 * |
|
17 * Purpose |
|
18 * ======= |
|
19 * |
|
20 * DGETRS solves a system of linear equations |
|
21 * A * X = B or A' * X = B |
|
22 * with a general N-by-N matrix A using the LU factorization computed |
|
23 * by DGETRF. |
|
24 * |
|
25 * Arguments |
|
26 * ========= |
|
27 * |
|
28 * TRANS (input) CHARACTER*1 |
|
29 * Specifies the form of the system of equations: |
|
30 * = 'N': A * X = B (No transpose) |
|
31 * = 'T': A'* X = B (Transpose) |
|
32 * = 'C': A'* X = B (Conjugate transpose = Transpose) |
|
33 * |
|
34 * N (input) INTEGER |
|
35 * The order of the matrix A. N >= 0. |
|
36 * |
|
37 * NRHS (input) INTEGER |
|
38 * The number of right hand sides, i.e., the number of columns |
|
39 * of the matrix B. NRHS >= 0. |
|
40 * |
|
41 * A (input) DOUBLE PRECISION array, dimension (LDA,N) |
|
42 * The factors L and U from the factorization A = P*L*U |
|
43 * as computed by DGETRF. |
|
44 * |
|
45 * LDA (input) INTEGER |
|
46 * The leading dimension of the array A. LDA >= max(1,N). |
|
47 * |
|
48 * IPIV (input) INTEGER array, dimension (N) |
|
49 * The pivot indices from DGETRF; for 1<=i<=N, row i of the |
|
50 * matrix was interchanged with row IPIV(i). |
|
51 * |
|
52 * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) |
|
53 * On entry, the right hand side matrix B. |
|
54 * On exit, the solution matrix X. |
|
55 * |
|
56 * LDB (input) INTEGER |
|
57 * The leading dimension of the array B. LDB >= max(1,N). |
|
58 * |
|
59 * INFO (output) INTEGER |
|
60 * = 0: successful exit |
|
61 * < 0: if INFO = -i, the i-th argument had an illegal value |
|
62 * |
|
63 * ===================================================================== |
|
64 * |
|
65 * .. Parameters .. |
|
66 DOUBLE PRECISION ONE |
|
67 PARAMETER ( ONE = 1.0D+0 ) |
|
68 * .. |
|
69 * .. Local Scalars .. |
|
70 LOGICAL NOTRAN |
|
71 * .. |
|
72 * .. External Functions .. |
|
73 LOGICAL LSAME |
|
74 EXTERNAL LSAME |
|
75 * .. |
|
76 * .. External Subroutines .. |
|
77 EXTERNAL DLASWP, DTRSM, XERBLA |
|
78 * .. |
|
79 * .. Intrinsic Functions .. |
|
80 INTRINSIC MAX |
|
81 * .. |
|
82 * .. Executable Statements .. |
|
83 * |
|
84 * Test the input parameters. |
|
85 * |
|
86 INFO = 0 |
|
87 NOTRAN = LSAME( TRANS, 'N' ) |
|
88 IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. |
|
89 $ LSAME( TRANS, 'C' ) ) THEN |
|
90 INFO = -1 |
|
91 ELSE IF( N.LT.0 ) THEN |
|
92 INFO = -2 |
|
93 ELSE IF( NRHS.LT.0 ) THEN |
|
94 INFO = -3 |
|
95 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN |
|
96 INFO = -5 |
|
97 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN |
|
98 INFO = -8 |
|
99 END IF |
|
100 IF( INFO.NE.0 ) THEN |
|
101 CALL XERBLA( 'DGETRS', -INFO ) |
|
102 RETURN |
|
103 END IF |
|
104 * |
|
105 * Quick return if possible |
|
106 * |
|
107 IF( N.EQ.0 .OR. NRHS.EQ.0 ) |
|
108 $ RETURN |
|
109 * |
|
110 IF( NOTRAN ) THEN |
|
111 * |
|
112 * Solve A * X = B. |
|
113 * |
|
114 * Apply row interchanges to the right hand sides. |
|
115 * |
|
116 CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, 1 ) |
|
117 * |
|
118 * Solve L*X = B, overwriting B with X. |
|
119 * |
|
120 CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS, |
|
121 $ ONE, A, LDA, B, LDB ) |
|
122 * |
|
123 * Solve U*X = B, overwriting B with X. |
|
124 * |
|
125 CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, |
|
126 $ NRHS, ONE, A, LDA, B, LDB ) |
|
127 ELSE |
|
128 * |
|
129 * Solve A' * X = B. |
|
130 * |
|
131 * Solve U'*X = B, overwriting B with X. |
|
132 * |
|
133 CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS, |
|
134 $ ONE, A, LDA, B, LDB ) |
|
135 * |
|
136 * Solve L'*X = B, overwriting B with X. |
|
137 * |
|
138 CALL DTRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE, |
|
139 $ A, LDA, B, LDB ) |
|
140 * |
|
141 * Apply row interchanges to the solution vectors. |
|
142 * |
|
143 CALL DLASWP( NRHS, B, LDB, 1, N, IPIV, -1 ) |
|
144 END IF |
|
145 * |
|
146 RETURN |
|
147 * |
|
148 * End of DGETRS |
|
149 * |
|
150 END |