2329
|
1 SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, |
|
2 $ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) |
|
3 * |
3333
|
4 * -- LAPACK auxiliary routine (version 3.0) -- |
2329
|
5 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., |
|
6 * Courant Institute, Argonne National Lab, and Rice University |
|
7 * October 31, 1992 |
|
8 * |
|
9 * .. Scalar Arguments .. |
|
10 LOGICAL LTRANL, LTRANR |
|
11 INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 |
|
12 DOUBLE PRECISION SCALE, XNORM |
|
13 * .. |
|
14 * .. Array Arguments .. |
|
15 DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), |
|
16 $ X( LDX, * ) |
|
17 * .. |
|
18 * |
|
19 * Purpose |
|
20 * ======= |
|
21 * |
|
22 * DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in |
|
23 * |
|
24 * op(TL)*X + ISGN*X*op(TR) = SCALE*B, |
|
25 * |
|
26 * where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or |
|
27 * -1. op(T) = T or T', where T' denotes the transpose of T. |
|
28 * |
|
29 * Arguments |
|
30 * ========= |
|
31 * |
|
32 * LTRANL (input) LOGICAL |
|
33 * On entry, LTRANL specifies the op(TL): |
|
34 * = .FALSE., op(TL) = TL, |
|
35 * = .TRUE., op(TL) = TL'. |
|
36 * |
|
37 * LTRANR (input) LOGICAL |
|
38 * On entry, LTRANR specifies the op(TR): |
|
39 * = .FALSE., op(TR) = TR, |
|
40 * = .TRUE., op(TR) = TR'. |
|
41 * |
|
42 * ISGN (input) INTEGER |
|
43 * On entry, ISGN specifies the sign of the equation |
|
44 * as described before. ISGN may only be 1 or -1. |
|
45 * |
|
46 * N1 (input) INTEGER |
|
47 * On entry, N1 specifies the order of matrix TL. |
|
48 * N1 may only be 0, 1 or 2. |
|
49 * |
|
50 * N2 (input) INTEGER |
|
51 * On entry, N2 specifies the order of matrix TR. |
|
52 * N2 may only be 0, 1 or 2. |
|
53 * |
|
54 * TL (input) DOUBLE PRECISION array, dimension (LDTL,2) |
|
55 * On entry, TL contains an N1 by N1 matrix. |
|
56 * |
|
57 * LDTL (input) INTEGER |
|
58 * The leading dimension of the matrix TL. LDTL >= max(1,N1). |
|
59 * |
|
60 * TR (input) DOUBLE PRECISION array, dimension (LDTR,2) |
|
61 * On entry, TR contains an N2 by N2 matrix. |
|
62 * |
|
63 * LDTR (input) INTEGER |
|
64 * The leading dimension of the matrix TR. LDTR >= max(1,N2). |
|
65 * |
|
66 * B (input) DOUBLE PRECISION array, dimension (LDB,2) |
|
67 * On entry, the N1 by N2 matrix B contains the right-hand |
|
68 * side of the equation. |
|
69 * |
|
70 * LDB (input) INTEGER |
|
71 * The leading dimension of the matrix B. LDB >= max(1,N1). |
|
72 * |
|
73 * SCALE (output) DOUBLE PRECISION |
|
74 * On exit, SCALE contains the scale factor. SCALE is chosen |
|
75 * less than or equal to 1 to prevent the solution overflowing. |
|
76 * |
|
77 * X (output) DOUBLE PRECISION array, dimension (LDX,2) |
|
78 * On exit, X contains the N1 by N2 solution. |
|
79 * |
|
80 * LDX (input) INTEGER |
|
81 * The leading dimension of the matrix X. LDX >= max(1,N1). |
|
82 * |
|
83 * XNORM (output) DOUBLE PRECISION |
|
84 * On exit, XNORM is the infinity-norm of the solution. |
|
85 * |
|
86 * INFO (output) INTEGER |
|
87 * On exit, INFO is set to |
|
88 * 0: successful exit. |
|
89 * 1: TL and TR have too close eigenvalues, so TL or |
|
90 * TR is perturbed to get a nonsingular equation. |
|
91 * NOTE: In the interests of speed, this routine does not |
|
92 * check the inputs for errors. |
|
93 * |
|
94 * ===================================================================== |
|
95 * |
|
96 * .. Parameters .. |
|
97 DOUBLE PRECISION ZERO, ONE |
|
98 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) |
|
99 DOUBLE PRECISION TWO, HALF, EIGHT |
|
100 PARAMETER ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 ) |
|
101 * .. |
|
102 * .. Local Scalars .. |
|
103 LOGICAL BSWAP, XSWAP |
|
104 INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K |
|
105 DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1, |
|
106 $ TEMP, U11, U12, U22, XMAX |
|
107 * .. |
|
108 * .. Local Arrays .. |
|
109 LOGICAL BSWPIV( 4 ), XSWPIV( 4 ) |
|
110 INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ), |
|
111 $ LOCU22( 4 ) |
|
112 DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 ) |
|
113 * .. |
|
114 * .. External Functions .. |
|
115 INTEGER IDAMAX |
|
116 DOUBLE PRECISION DLAMCH |
|
117 EXTERNAL IDAMAX, DLAMCH |
|
118 * .. |
|
119 * .. External Subroutines .. |
|
120 EXTERNAL DCOPY, DSWAP |
|
121 * .. |
|
122 * .. Intrinsic Functions .. |
|
123 INTRINSIC ABS, MAX |
|
124 * .. |
|
125 * .. Data statements .. |
|
126 DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / , |
|
127 $ LOCU22 / 4, 3, 2, 1 / |
|
128 DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. / |
|
129 DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. / |
|
130 * .. |
|
131 * .. Executable Statements .. |
|
132 * |
|
133 * Do not check the input parameters for errors |
|
134 * |
|
135 INFO = 0 |
|
136 * |
|
137 * Quick return if possible |
|
138 * |
|
139 IF( N1.EQ.0 .OR. N2.EQ.0 ) |
|
140 $ RETURN |
|
141 * |
|
142 * Set constants to control overflow |
|
143 * |
|
144 EPS = DLAMCH( 'P' ) |
|
145 SMLNUM = DLAMCH( 'S' ) / EPS |
|
146 SGN = ISGN |
|
147 * |
|
148 K = N1 + N1 + N2 - 2 |
|
149 GO TO ( 10, 20, 30, 50 )K |
|
150 * |
|
151 * 1 by 1: TL11*X + SGN*X*TR11 = B11 |
|
152 * |
|
153 10 CONTINUE |
|
154 TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 ) |
|
155 BET = ABS( TAU1 ) |
|
156 IF( BET.LE.SMLNUM ) THEN |
|
157 TAU1 = SMLNUM |
|
158 BET = SMLNUM |
|
159 INFO = 1 |
|
160 END IF |
|
161 * |
|
162 SCALE = ONE |
|
163 GAM = ABS( B( 1, 1 ) ) |
|
164 IF( SMLNUM*GAM.GT.BET ) |
|
165 $ SCALE = ONE / GAM |
|
166 * |
|
167 X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1 |
|
168 XNORM = ABS( X( 1, 1 ) ) |
|
169 RETURN |
|
170 * |
|
171 * 1 by 2: |
|
172 * TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] |
|
173 * [TR21 TR22] |
|
174 * |
|
175 20 CONTINUE |
|
176 * |
|
177 SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ), |
|
178 $ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ), |
|
179 $ SMLNUM ) |
|
180 TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 ) |
|
181 TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 ) |
|
182 IF( LTRANR ) THEN |
|
183 TMP( 2 ) = SGN*TR( 2, 1 ) |
|
184 TMP( 3 ) = SGN*TR( 1, 2 ) |
|
185 ELSE |
|
186 TMP( 2 ) = SGN*TR( 1, 2 ) |
|
187 TMP( 3 ) = SGN*TR( 2, 1 ) |
|
188 END IF |
|
189 BTMP( 1 ) = B( 1, 1 ) |
|
190 BTMP( 2 ) = B( 1, 2 ) |
|
191 GO TO 40 |
|
192 * |
|
193 * 2 by 1: |
|
194 * op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] |
|
195 * [TL21 TL22] [X21] [X21] [B21] |
|
196 * |
|
197 30 CONTINUE |
|
198 SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ), |
|
199 $ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ), |
|
200 $ SMLNUM ) |
|
201 TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 ) |
|
202 TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 ) |
|
203 IF( LTRANL ) THEN |
|
204 TMP( 2 ) = TL( 1, 2 ) |
|
205 TMP( 3 ) = TL( 2, 1 ) |
|
206 ELSE |
|
207 TMP( 2 ) = TL( 2, 1 ) |
|
208 TMP( 3 ) = TL( 1, 2 ) |
|
209 END IF |
|
210 BTMP( 1 ) = B( 1, 1 ) |
|
211 BTMP( 2 ) = B( 2, 1 ) |
|
212 40 CONTINUE |
|
213 * |
|
214 * Solve 2 by 2 system using complete pivoting. |
|
215 * Set pivots less than SMIN to SMIN. |
|
216 * |
|
217 IPIV = IDAMAX( 4, TMP, 1 ) |
|
218 U11 = TMP( IPIV ) |
|
219 IF( ABS( U11 ).LE.SMIN ) THEN |
|
220 INFO = 1 |
|
221 U11 = SMIN |
|
222 END IF |
|
223 U12 = TMP( LOCU12( IPIV ) ) |
|
224 L21 = TMP( LOCL21( IPIV ) ) / U11 |
|
225 U22 = TMP( LOCU22( IPIV ) ) - U12*L21 |
|
226 XSWAP = XSWPIV( IPIV ) |
|
227 BSWAP = BSWPIV( IPIV ) |
|
228 IF( ABS( U22 ).LE.SMIN ) THEN |
|
229 INFO = 1 |
|
230 U22 = SMIN |
|
231 END IF |
|
232 IF( BSWAP ) THEN |
|
233 TEMP = BTMP( 2 ) |
|
234 BTMP( 2 ) = BTMP( 1 ) - L21*TEMP |
|
235 BTMP( 1 ) = TEMP |
|
236 ELSE |
|
237 BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 ) |
|
238 END IF |
|
239 SCALE = ONE |
|
240 IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR. |
|
241 $ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN |
|
242 SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) ) |
|
243 BTMP( 1 ) = BTMP( 1 )*SCALE |
|
244 BTMP( 2 ) = BTMP( 2 )*SCALE |
|
245 END IF |
|
246 X2( 2 ) = BTMP( 2 ) / U22 |
|
247 X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 ) |
|
248 IF( XSWAP ) THEN |
|
249 TEMP = X2( 2 ) |
|
250 X2( 2 ) = X2( 1 ) |
|
251 X2( 1 ) = TEMP |
|
252 END IF |
|
253 X( 1, 1 ) = X2( 1 ) |
|
254 IF( N1.EQ.1 ) THEN |
|
255 X( 1, 2 ) = X2( 2 ) |
|
256 XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) ) |
|
257 ELSE |
|
258 X( 2, 1 ) = X2( 2 ) |
|
259 XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) ) |
|
260 END IF |
|
261 RETURN |
|
262 * |
|
263 * 2 by 2: |
|
264 * op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] |
|
265 * [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] |
|
266 * |
|
267 * Solve equivalent 4 by 4 system using complete pivoting. |
|
268 * Set pivots less than SMIN to SMIN. |
|
269 * |
|
270 50 CONTINUE |
|
271 SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ), |
|
272 $ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ) |
|
273 SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ), |
|
274 $ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ) |
|
275 SMIN = MAX( EPS*SMIN, SMLNUM ) |
|
276 BTMP( 1 ) = ZERO |
|
277 CALL DCOPY( 16, BTMP, 0, T16, 1 ) |
|
278 T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 ) |
|
279 T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 ) |
|
280 T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 ) |
|
281 T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 ) |
|
282 IF( LTRANL ) THEN |
|
283 T16( 1, 2 ) = TL( 2, 1 ) |
|
284 T16( 2, 1 ) = TL( 1, 2 ) |
|
285 T16( 3, 4 ) = TL( 2, 1 ) |
|
286 T16( 4, 3 ) = TL( 1, 2 ) |
|
287 ELSE |
|
288 T16( 1, 2 ) = TL( 1, 2 ) |
|
289 T16( 2, 1 ) = TL( 2, 1 ) |
|
290 T16( 3, 4 ) = TL( 1, 2 ) |
|
291 T16( 4, 3 ) = TL( 2, 1 ) |
|
292 END IF |
|
293 IF( LTRANR ) THEN |
|
294 T16( 1, 3 ) = SGN*TR( 1, 2 ) |
|
295 T16( 2, 4 ) = SGN*TR( 1, 2 ) |
|
296 T16( 3, 1 ) = SGN*TR( 2, 1 ) |
|
297 T16( 4, 2 ) = SGN*TR( 2, 1 ) |
|
298 ELSE |
|
299 T16( 1, 3 ) = SGN*TR( 2, 1 ) |
|
300 T16( 2, 4 ) = SGN*TR( 2, 1 ) |
|
301 T16( 3, 1 ) = SGN*TR( 1, 2 ) |
|
302 T16( 4, 2 ) = SGN*TR( 1, 2 ) |
|
303 END IF |
|
304 BTMP( 1 ) = B( 1, 1 ) |
|
305 BTMP( 2 ) = B( 2, 1 ) |
|
306 BTMP( 3 ) = B( 1, 2 ) |
|
307 BTMP( 4 ) = B( 2, 2 ) |
|
308 * |
|
309 * Perform elimination |
|
310 * |
|
311 DO 100 I = 1, 3 |
|
312 XMAX = ZERO |
|
313 DO 70 IP = I, 4 |
|
314 DO 60 JP = I, 4 |
|
315 IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN |
|
316 XMAX = ABS( T16( IP, JP ) ) |
|
317 IPSV = IP |
|
318 JPSV = JP |
|
319 END IF |
|
320 60 CONTINUE |
|
321 70 CONTINUE |
|
322 IF( IPSV.NE.I ) THEN |
|
323 CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 ) |
|
324 TEMP = BTMP( I ) |
|
325 BTMP( I ) = BTMP( IPSV ) |
|
326 BTMP( IPSV ) = TEMP |
|
327 END IF |
|
328 IF( JPSV.NE.I ) |
|
329 $ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 ) |
|
330 JPIV( I ) = JPSV |
|
331 IF( ABS( T16( I, I ) ).LT.SMIN ) THEN |
|
332 INFO = 1 |
|
333 T16( I, I ) = SMIN |
|
334 END IF |
|
335 DO 90 J = I + 1, 4 |
|
336 T16( J, I ) = T16( J, I ) / T16( I, I ) |
|
337 BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I ) |
|
338 DO 80 K = I + 1, 4 |
|
339 T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K ) |
|
340 80 CONTINUE |
|
341 90 CONTINUE |
|
342 100 CONTINUE |
|
343 IF( ABS( T16( 4, 4 ) ).LT.SMIN ) |
|
344 $ T16( 4, 4 ) = SMIN |
|
345 SCALE = ONE |
|
346 IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR. |
|
347 $ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR. |
|
348 $ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR. |
|
349 $ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN |
|
350 SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ), |
|
351 $ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) ) |
|
352 BTMP( 1 ) = BTMP( 1 )*SCALE |
|
353 BTMP( 2 ) = BTMP( 2 )*SCALE |
|
354 BTMP( 3 ) = BTMP( 3 )*SCALE |
|
355 BTMP( 4 ) = BTMP( 4 )*SCALE |
|
356 END IF |
|
357 DO 120 I = 1, 4 |
|
358 K = 5 - I |
|
359 TEMP = ONE / T16( K, K ) |
|
360 TMP( K ) = BTMP( K )*TEMP |
|
361 DO 110 J = K + 1, 4 |
|
362 TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J ) |
|
363 110 CONTINUE |
|
364 120 CONTINUE |
|
365 DO 130 I = 1, 3 |
|
366 IF( JPIV( 4-I ).NE.4-I ) THEN |
|
367 TEMP = TMP( 4-I ) |
|
368 TMP( 4-I ) = TMP( JPIV( 4-I ) ) |
|
369 TMP( JPIV( 4-I ) ) = TEMP |
|
370 END IF |
|
371 130 CONTINUE |
|
372 X( 1, 1 ) = TMP( 1 ) |
|
373 X( 2, 1 ) = TMP( 2 ) |
|
374 X( 1, 2 ) = TMP( 3 ) |
|
375 X( 2, 2 ) = TMP( 4 ) |
|
376 XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ), |
|
377 $ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) ) |
|
378 RETURN |
|
379 * |
|
380 * End of DLASY2 |
|
381 * |
|
382 END |