7017
|
1 ## Copyright (C) 2000, 2006, 2007 Paul Kienzle |
5827
|
2 ## |
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
7016
|
7 ## the Free Software Foundation; either version 3 of the License, or (at |
|
8 ## your option) any later version. |
5827
|
9 ## |
|
10 ## Octave is distributed in the hope that it will be useful, but |
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 ## General Public License for more details. |
|
14 ## |
|
15 ## You should have received a copy of the GNU General Public License |
7016
|
16 ## along with Octave; see the file COPYING. If not, see |
|
17 ## <http://www.gnu.org/licenses/>. |
5827
|
18 |
|
19 ## -*- texinfo -*- |
|
20 ## @deftypefn {Function File} {@var{p} =} factor (@var{q}) |
|
21 ## @deftypefnx {Function File} {[@var{p}, @var{n}] =} factor (@var{q}) |
|
22 ## |
|
23 ## Return prime factorization of @var{q}. That is @code{prod (@var{p}) |
|
24 ## == @var{q}}. If @code{@var{q} == 1}, returns 1. |
|
25 ## |
7001
|
26 ## With two output arguments, returns the unique primes @var{p} and |
|
27 ## their multiplicities. That is @code{prod (@var{p} .^ @var{n}) == |
6248
|
28 ## @var{q}}. |
5827
|
29 ## |
|
30 ## @end deftypefn |
|
31 |
|
32 ## Author: Paul Kienzle |
|
33 |
|
34 ## 2002-01-28 Paul Kienzle |
|
35 ## * remove recursion; only check existing primes for multiplicity > 1 |
|
36 ## * return multiplicity as suggested by Dirk Laurie |
|
37 ## * add error handling |
|
38 |
|
39 function [x, m] = factor (n) |
|
40 |
|
41 if (nargin < 1) |
|
42 print_usage (); |
|
43 endif |
|
44 |
|
45 if (! isscalar (n) || n != fix (n)) |
|
46 error ("factor: n must be a scalar integer"); |
|
47 endif |
|
48 |
8506
|
49 ## Special case of no primes less than sqrt(n). |
5827
|
50 if (n < 4) |
|
51 x = n; |
|
52 m = 1; |
|
53 return; |
|
54 endif |
|
55 |
|
56 x = []; |
|
57 ## There is at most one prime greater than sqrt(n), and if it exists, |
|
58 ## it has multiplicity 1, so no need to consider any factors greater |
|
59 ## than sqrt(n) directly. [If there were two factors p1, p2 > sqrt(n), |
|
60 ## then n >= p1*p2 > sqrt(n)*sqrt(n) == n. Contradiction.] |
|
61 p = primes (sqrt (n)); |
|
62 while (n > 1) |
8506
|
63 ## Find prime factors in remaining n. |
5827
|
64 q = n ./ p; |
|
65 p = p (q == fix (q)); |
|
66 if (isempty (p)) |
8506
|
67 ## Can't be reduced further, so n must itself be a prime. |
|
68 p = n; |
5827
|
69 endif |
|
70 x = [x, p]; |
8506
|
71 ## Reduce n. |
5827
|
72 n = n / prod (p); |
|
73 endwhile |
|
74 x = sort (x); |
|
75 |
8506
|
76 ## Determine muliplicity. |
5827
|
77 if (nargout > 1) |
|
78 idx = find ([0, x] != [x, 0]); |
|
79 x = x(idx(1:length(idx)-1)); |
|
80 m = diff (idx); |
|
81 endif |
|
82 |
|
83 endfunction |
|
84 |
|
85 ## test: |
|
86 ## assert(factor(1),1); |
|
87 ## for i=2:20 |
|
88 ## p = factor(i); |
|
89 ## assert(prod(p),i); |
|
90 ## assert(all(isprime(p))); |
|
91 ## [p,n] = factor(i); |
|
92 ## assert(prod(p.^n),i); |
|
93 ## assert(all([0,p]!=[p,0])); |
|
94 ## end |