Mercurial > hg > octave-nkf
comparison scripts/specfun/expint.m @ 16584:2f766ceeb03e
Add ellipj, ellipke, and expint functions from Octave Forge
* ellipj.cc, ellipke.m, expint.m: New files.
* libinterp/corefcn/module.mk (COREFCN_SRC): Add ellipj.cc to the list.
* scripts/specfun/module.mk (specfun_FCN_FILES): Add ellipke.m and
expint.m to the list.
* __unimplemented__.m (missing_functions): Remove ellipj, ellipke, and
expint from the list.
* arith.txi: Include ellipj, ellipke, and expint docstrings.
* NEWS: Mention ellipj, ellipke, and expint.
author | Mike Miller <mtmiller@ieee.org> |
---|---|
date | Wed, 24 Apr 2013 23:22:50 -0400 |
parents | |
children | 1a3bfb14b5da |
comparison
equal
deleted
inserted
replaced
16583:e74ef19d2268 | 16584:2f766ceeb03e |
---|---|
1 ## Copyright (C) 2006 Sylvain Pelissier <sylvain.pelissier@gmail.com> | |
2 ## | |
3 ## This program is free software; you can redistribute it and/or modify it under | |
4 ## the terms of the GNU General Public License as published by the Free Software | |
5 ## Foundation; either version 3 of the License, or (at your option) any later | |
6 ## version. | |
7 ## | |
8 ## This program is distributed in the hope that it will be useful, but WITHOUT | |
9 ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
10 ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more | |
11 ## details. | |
12 ## | |
13 ## You should have received a copy of the GNU General Public License along with | |
14 ## this program; if not, see <http://www.gnu.org/licenses/>. | |
15 | |
16 ## -*- texinfo -*- | |
17 ## @deftypefn {Function File} {@var{y} =} expint (@var{x}) | |
18 ## Compute the exponential integral, | |
19 ## @verbatim | |
20 ## infinity | |
21 ## / | |
22 ## expint(x) = | exp(t)/t dt | |
23 ## / | |
24 ## x | |
25 ## @end verbatim | |
26 ## @seealso{expint_E1, expint_Ei} | |
27 ## @end deftypefn | |
28 | |
29 function y = expint(x) | |
30 if (nargin != 1) | |
31 print_usage; | |
32 endif | |
33 y = expint_E1(x); | |
34 endfunction | |
35 | |
36 ## -*- texinfo -*- | |
37 ## @deftypefn {Function File} {@var{y} =} expint_E1 (@var{x}) | |
38 ## Compute the exponential integral, | |
39 ## @verbatim | |
40 ## infinity | |
41 ## / | |
42 ## expint(x) = | exp(t)/t dt | |
43 ## / | |
44 ## x | |
45 ## @end verbatim | |
46 ## @seealso{expint, expint_Ei} | |
47 ## @end deftypefn | |
48 | |
49 function y = expint_E1(x) | |
50 if (nargin != 1) | |
51 print_usage; | |
52 endif | |
53 y = x; | |
54 y(imag(x) > 0 & imag(x) != 0) = -expint_Ei(-y(imag(x) > 0 & imag(x) != 0)) -i.*pi; | |
55 y(imag(x) < 0 & imag(x) != 0) = -expint_Ei(-y(imag(x) < 0 & imag(x) != 0)) +i.*pi; | |
56 y(real(x) >= 0 & imag(x)==0) = -expint_Ei(-y(real(x) >= 0 & imag(x)==0)); | |
57 y(real(x) < 0 & imag(x)==0) = -expint_Ei(-y(real(x) < 0 & imag(x)==0)) -i.*pi; | |
58 endfunction | |
59 | |
60 ## -*- texinfo -*- | |
61 ## @deftypefn {Function File} {@var{y} =} expint_Ei (@var{x}) | |
62 ## Compute the exponential integral, | |
63 ## @verbatim | |
64 ## infinity | |
65 ## / | |
66 ## expint_Ei(x) = - | exp(t)/t dt | |
67 ## / | |
68 ## -x | |
69 ## @end verbatim | |
70 ## @seealso{expint, expint_E1} | |
71 ## @end deftypefn | |
72 | |
73 function y = expint_Ei(x) | |
74 if (nargin != 1) | |
75 print_usage; | |
76 endif | |
77 y = zeros(size(x)); | |
78 F = @(x) exp(-x)./x; | |
79 s = prod(size(x)); | |
80 for t = 1:s; | |
81 if(x(t)<0 && imag(x(t)) == 0) | |
82 y(t) = -quad(F,-x(t),Inf); | |
83 else | |
84 if(abs(x(t)) > 2 && imag(x(t)) == 0) | |
85 y(t) = expint_Ei(2) - quad(F,-x(t),-2); | |
86 else | |
87 if(abs(x(t)) >= 10) | |
88 if(imag(x(t)) <= 0) | |
89 a1 = 4.03640; | |
90 a2 = 1.15198; | |
91 b1 = 5.03637; | |
92 b2 = 4.19160; | |
93 y(t) = -(x(t).^2 - a1.*x(t) + a2)./((x(t).^2-b1.*x(t)+b2).*(-x(t)).*exp(-x(t)))-i.*pi; | |
94 else | |
95 y(t) = conj(expint_Ei(conj(x(t)))); | |
96 endif; | |
97 ## Serie Expansion | |
98 else | |
99 for k = 1:100; | |
100 y(t) = y(t) + x(t).^k./(k.*factorial(k)); | |
101 endfor | |
102 y(t) = 0.577215664901532860606512090082402431 + log(x(t)) + y(t); | |
103 endif | |
104 endif | |
105 endif | |
106 endfor | |
107 endfunction |