Mercurial > hg > octave-nkf
comparison libcruft/lapack/dlasy2.f @ 2329:30c606bec7a8
[project @ 1996-07-19 01:29:05 by jwe]
Initial revision
author | jwe |
---|---|
date | Fri, 19 Jul 1996 01:29:55 +0000 |
parents | |
children | 15cddaacbc2d |
comparison
equal
deleted
inserted
replaced
2328:b44c3b2a5fce | 2329:30c606bec7a8 |
---|---|
1 SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, | |
2 $ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) | |
3 * | |
4 * -- LAPACK auxiliary routine (version 2.0) -- | |
5 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
6 * Courant Institute, Argonne National Lab, and Rice University | |
7 * October 31, 1992 | |
8 * | |
9 * .. Scalar Arguments .. | |
10 LOGICAL LTRANL, LTRANR | |
11 INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 | |
12 DOUBLE PRECISION SCALE, XNORM | |
13 * .. | |
14 * .. Array Arguments .. | |
15 DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), | |
16 $ X( LDX, * ) | |
17 * .. | |
18 * | |
19 * Purpose | |
20 * ======= | |
21 * | |
22 * DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in | |
23 * | |
24 * op(TL)*X + ISGN*X*op(TR) = SCALE*B, | |
25 * | |
26 * where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or | |
27 * -1. op(T) = T or T', where T' denotes the transpose of T. | |
28 * | |
29 * Arguments | |
30 * ========= | |
31 * | |
32 * LTRANL (input) LOGICAL | |
33 * On entry, LTRANL specifies the op(TL): | |
34 * = .FALSE., op(TL) = TL, | |
35 * = .TRUE., op(TL) = TL'. | |
36 * | |
37 * LTRANR (input) LOGICAL | |
38 * On entry, LTRANR specifies the op(TR): | |
39 * = .FALSE., op(TR) = TR, | |
40 * = .TRUE., op(TR) = TR'. | |
41 * | |
42 * ISGN (input) INTEGER | |
43 * On entry, ISGN specifies the sign of the equation | |
44 * as described before. ISGN may only be 1 or -1. | |
45 * | |
46 * N1 (input) INTEGER | |
47 * On entry, N1 specifies the order of matrix TL. | |
48 * N1 may only be 0, 1 or 2. | |
49 * | |
50 * N2 (input) INTEGER | |
51 * On entry, N2 specifies the order of matrix TR. | |
52 * N2 may only be 0, 1 or 2. | |
53 * | |
54 * TL (input) DOUBLE PRECISION array, dimension (LDTL,2) | |
55 * On entry, TL contains an N1 by N1 matrix. | |
56 * | |
57 * LDTL (input) INTEGER | |
58 * The leading dimension of the matrix TL. LDTL >= max(1,N1). | |
59 * | |
60 * TR (input) DOUBLE PRECISION array, dimension (LDTR,2) | |
61 * On entry, TR contains an N2 by N2 matrix. | |
62 * | |
63 * LDTR (input) INTEGER | |
64 * The leading dimension of the matrix TR. LDTR >= max(1,N2). | |
65 * | |
66 * B (input) DOUBLE PRECISION array, dimension (LDB,2) | |
67 * On entry, the N1 by N2 matrix B contains the right-hand | |
68 * side of the equation. | |
69 * | |
70 * LDB (input) INTEGER | |
71 * The leading dimension of the matrix B. LDB >= max(1,N1). | |
72 * | |
73 * SCALE (output) DOUBLE PRECISION | |
74 * On exit, SCALE contains the scale factor. SCALE is chosen | |
75 * less than or equal to 1 to prevent the solution overflowing. | |
76 * | |
77 * X (output) DOUBLE PRECISION array, dimension (LDX,2) | |
78 * On exit, X contains the N1 by N2 solution. | |
79 * | |
80 * LDX (input) INTEGER | |
81 * The leading dimension of the matrix X. LDX >= max(1,N1). | |
82 * | |
83 * XNORM (output) DOUBLE PRECISION | |
84 * On exit, XNORM is the infinity-norm of the solution. | |
85 * | |
86 * INFO (output) INTEGER | |
87 * On exit, INFO is set to | |
88 * 0: successful exit. | |
89 * 1: TL and TR have too close eigenvalues, so TL or | |
90 * TR is perturbed to get a nonsingular equation. | |
91 * NOTE: In the interests of speed, this routine does not | |
92 * check the inputs for errors. | |
93 * | |
94 * ===================================================================== | |
95 * | |
96 * .. Parameters .. | |
97 DOUBLE PRECISION ZERO, ONE | |
98 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) | |
99 DOUBLE PRECISION TWO, HALF, EIGHT | |
100 PARAMETER ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 ) | |
101 * .. | |
102 * .. Local Scalars .. | |
103 LOGICAL BSWAP, XSWAP | |
104 INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K | |
105 DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1, | |
106 $ TEMP, U11, U12, U22, XMAX | |
107 * .. | |
108 * .. Local Arrays .. | |
109 LOGICAL BSWPIV( 4 ), XSWPIV( 4 ) | |
110 INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ), | |
111 $ LOCU22( 4 ) | |
112 DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 ) | |
113 * .. | |
114 * .. External Functions .. | |
115 INTEGER IDAMAX | |
116 DOUBLE PRECISION DLAMCH | |
117 EXTERNAL IDAMAX, DLAMCH | |
118 * .. | |
119 * .. External Subroutines .. | |
120 EXTERNAL DCOPY, DSWAP | |
121 * .. | |
122 * .. Intrinsic Functions .. | |
123 INTRINSIC ABS, MAX | |
124 * .. | |
125 * .. Data statements .. | |
126 DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / , | |
127 $ LOCU22 / 4, 3, 2, 1 / | |
128 DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. / | |
129 DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. / | |
130 * .. | |
131 * .. Executable Statements .. | |
132 * | |
133 * Do not check the input parameters for errors | |
134 * | |
135 INFO = 0 | |
136 * | |
137 * Quick return if possible | |
138 * | |
139 IF( N1.EQ.0 .OR. N2.EQ.0 ) | |
140 $ RETURN | |
141 * | |
142 * Set constants to control overflow | |
143 * | |
144 EPS = DLAMCH( 'P' ) | |
145 SMLNUM = DLAMCH( 'S' ) / EPS | |
146 SGN = ISGN | |
147 * | |
148 K = N1 + N1 + N2 - 2 | |
149 GO TO ( 10, 20, 30, 50 )K | |
150 * | |
151 * 1 by 1: TL11*X + SGN*X*TR11 = B11 | |
152 * | |
153 10 CONTINUE | |
154 TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 ) | |
155 BET = ABS( TAU1 ) | |
156 IF( BET.LE.SMLNUM ) THEN | |
157 TAU1 = SMLNUM | |
158 BET = SMLNUM | |
159 INFO = 1 | |
160 END IF | |
161 * | |
162 SCALE = ONE | |
163 GAM = ABS( B( 1, 1 ) ) | |
164 IF( SMLNUM*GAM.GT.BET ) | |
165 $ SCALE = ONE / GAM | |
166 * | |
167 X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1 | |
168 XNORM = ABS( X( 1, 1 ) ) | |
169 RETURN | |
170 * | |
171 * 1 by 2: | |
172 * TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] | |
173 * [TR21 TR22] | |
174 * | |
175 20 CONTINUE | |
176 * | |
177 SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ), | |
178 $ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ), | |
179 $ SMLNUM ) | |
180 TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 ) | |
181 TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 ) | |
182 IF( LTRANR ) THEN | |
183 TMP( 2 ) = SGN*TR( 2, 1 ) | |
184 TMP( 3 ) = SGN*TR( 1, 2 ) | |
185 ELSE | |
186 TMP( 2 ) = SGN*TR( 1, 2 ) | |
187 TMP( 3 ) = SGN*TR( 2, 1 ) | |
188 END IF | |
189 BTMP( 1 ) = B( 1, 1 ) | |
190 BTMP( 2 ) = B( 1, 2 ) | |
191 GO TO 40 | |
192 * | |
193 * 2 by 1: | |
194 * op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] | |
195 * [TL21 TL22] [X21] [X21] [B21] | |
196 * | |
197 30 CONTINUE | |
198 SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ), | |
199 $ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ), | |
200 $ SMLNUM ) | |
201 TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 ) | |
202 TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 ) | |
203 IF( LTRANL ) THEN | |
204 TMP( 2 ) = TL( 1, 2 ) | |
205 TMP( 3 ) = TL( 2, 1 ) | |
206 ELSE | |
207 TMP( 2 ) = TL( 2, 1 ) | |
208 TMP( 3 ) = TL( 1, 2 ) | |
209 END IF | |
210 BTMP( 1 ) = B( 1, 1 ) | |
211 BTMP( 2 ) = B( 2, 1 ) | |
212 40 CONTINUE | |
213 * | |
214 * Solve 2 by 2 system using complete pivoting. | |
215 * Set pivots less than SMIN to SMIN. | |
216 * | |
217 IPIV = IDAMAX( 4, TMP, 1 ) | |
218 U11 = TMP( IPIV ) | |
219 IF( ABS( U11 ).LE.SMIN ) THEN | |
220 INFO = 1 | |
221 U11 = SMIN | |
222 END IF | |
223 U12 = TMP( LOCU12( IPIV ) ) | |
224 L21 = TMP( LOCL21( IPIV ) ) / U11 | |
225 U22 = TMP( LOCU22( IPIV ) ) - U12*L21 | |
226 XSWAP = XSWPIV( IPIV ) | |
227 BSWAP = BSWPIV( IPIV ) | |
228 IF( ABS( U22 ).LE.SMIN ) THEN | |
229 INFO = 1 | |
230 U22 = SMIN | |
231 END IF | |
232 IF( BSWAP ) THEN | |
233 TEMP = BTMP( 2 ) | |
234 BTMP( 2 ) = BTMP( 1 ) - L21*TEMP | |
235 BTMP( 1 ) = TEMP | |
236 ELSE | |
237 BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 ) | |
238 END IF | |
239 SCALE = ONE | |
240 IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR. | |
241 $ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN | |
242 SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) ) | |
243 BTMP( 1 ) = BTMP( 1 )*SCALE | |
244 BTMP( 2 ) = BTMP( 2 )*SCALE | |
245 END IF | |
246 X2( 2 ) = BTMP( 2 ) / U22 | |
247 X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 ) | |
248 IF( XSWAP ) THEN | |
249 TEMP = X2( 2 ) | |
250 X2( 2 ) = X2( 1 ) | |
251 X2( 1 ) = TEMP | |
252 END IF | |
253 X( 1, 1 ) = X2( 1 ) | |
254 IF( N1.EQ.1 ) THEN | |
255 X( 1, 2 ) = X2( 2 ) | |
256 XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) ) | |
257 ELSE | |
258 X( 2, 1 ) = X2( 2 ) | |
259 XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) ) | |
260 END IF | |
261 RETURN | |
262 * | |
263 * 2 by 2: | |
264 * op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] | |
265 * [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] | |
266 * | |
267 * Solve equivalent 4 by 4 system using complete pivoting. | |
268 * Set pivots less than SMIN to SMIN. | |
269 * | |
270 50 CONTINUE | |
271 SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ), | |
272 $ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ) | |
273 SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ), | |
274 $ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ) | |
275 SMIN = MAX( EPS*SMIN, SMLNUM ) | |
276 BTMP( 1 ) = ZERO | |
277 CALL DCOPY( 16, BTMP, 0, T16, 1 ) | |
278 T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 ) | |
279 T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 ) | |
280 T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 ) | |
281 T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 ) | |
282 IF( LTRANL ) THEN | |
283 T16( 1, 2 ) = TL( 2, 1 ) | |
284 T16( 2, 1 ) = TL( 1, 2 ) | |
285 T16( 3, 4 ) = TL( 2, 1 ) | |
286 T16( 4, 3 ) = TL( 1, 2 ) | |
287 ELSE | |
288 T16( 1, 2 ) = TL( 1, 2 ) | |
289 T16( 2, 1 ) = TL( 2, 1 ) | |
290 T16( 3, 4 ) = TL( 1, 2 ) | |
291 T16( 4, 3 ) = TL( 2, 1 ) | |
292 END IF | |
293 IF( LTRANR ) THEN | |
294 T16( 1, 3 ) = SGN*TR( 1, 2 ) | |
295 T16( 2, 4 ) = SGN*TR( 1, 2 ) | |
296 T16( 3, 1 ) = SGN*TR( 2, 1 ) | |
297 T16( 4, 2 ) = SGN*TR( 2, 1 ) | |
298 ELSE | |
299 T16( 1, 3 ) = SGN*TR( 2, 1 ) | |
300 T16( 2, 4 ) = SGN*TR( 2, 1 ) | |
301 T16( 3, 1 ) = SGN*TR( 1, 2 ) | |
302 T16( 4, 2 ) = SGN*TR( 1, 2 ) | |
303 END IF | |
304 BTMP( 1 ) = B( 1, 1 ) | |
305 BTMP( 2 ) = B( 2, 1 ) | |
306 BTMP( 3 ) = B( 1, 2 ) | |
307 BTMP( 4 ) = B( 2, 2 ) | |
308 * | |
309 * Perform elimination | |
310 * | |
311 DO 100 I = 1, 3 | |
312 XMAX = ZERO | |
313 DO 70 IP = I, 4 | |
314 DO 60 JP = I, 4 | |
315 IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN | |
316 XMAX = ABS( T16( IP, JP ) ) | |
317 IPSV = IP | |
318 JPSV = JP | |
319 END IF | |
320 60 CONTINUE | |
321 70 CONTINUE | |
322 IF( IPSV.NE.I ) THEN | |
323 CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 ) | |
324 TEMP = BTMP( I ) | |
325 BTMP( I ) = BTMP( IPSV ) | |
326 BTMP( IPSV ) = TEMP | |
327 END IF | |
328 IF( JPSV.NE.I ) | |
329 $ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 ) | |
330 JPIV( I ) = JPSV | |
331 IF( ABS( T16( I, I ) ).LT.SMIN ) THEN | |
332 INFO = 1 | |
333 T16( I, I ) = SMIN | |
334 END IF | |
335 DO 90 J = I + 1, 4 | |
336 T16( J, I ) = T16( J, I ) / T16( I, I ) | |
337 BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I ) | |
338 DO 80 K = I + 1, 4 | |
339 T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K ) | |
340 80 CONTINUE | |
341 90 CONTINUE | |
342 100 CONTINUE | |
343 IF( ABS( T16( 4, 4 ) ).LT.SMIN ) | |
344 $ T16( 4, 4 ) = SMIN | |
345 SCALE = ONE | |
346 IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR. | |
347 $ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR. | |
348 $ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR. | |
349 $ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN | |
350 SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ), | |
351 $ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) ) | |
352 BTMP( 1 ) = BTMP( 1 )*SCALE | |
353 BTMP( 2 ) = BTMP( 2 )*SCALE | |
354 BTMP( 3 ) = BTMP( 3 )*SCALE | |
355 BTMP( 4 ) = BTMP( 4 )*SCALE | |
356 END IF | |
357 DO 120 I = 1, 4 | |
358 K = 5 - I | |
359 TEMP = ONE / T16( K, K ) | |
360 TMP( K ) = BTMP( K )*TEMP | |
361 DO 110 J = K + 1, 4 | |
362 TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J ) | |
363 110 CONTINUE | |
364 120 CONTINUE | |
365 DO 130 I = 1, 3 | |
366 IF( JPIV( 4-I ).NE.4-I ) THEN | |
367 TEMP = TMP( 4-I ) | |
368 TMP( 4-I ) = TMP( JPIV( 4-I ) ) | |
369 TMP( JPIV( 4-I ) ) = TEMP | |
370 END IF | |
371 130 CONTINUE | |
372 X( 1, 1 ) = TMP( 1 ) | |
373 X( 2, 1 ) = TMP( 2 ) | |
374 X( 1, 2 ) = TMP( 3 ) | |
375 X( 2, 2 ) = TMP( 4 ) | |
376 XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ), | |
377 $ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) ) | |
378 RETURN | |
379 * | |
380 * End of DLASY2 | |
381 * | |
382 END |