Mercurial > hg > octave-nkf
comparison scripts/polynomial/pchip.m @ 5837:55404f3b0da1
[project @ 2006-06-01 19:05:31 by jwe]
author | jwe |
---|---|
date | Thu, 01 Jun 2006 19:05:32 +0000 |
parents | |
children | 376e02b2ce70 |
comparison
equal
deleted
inserted
replaced
5836:ed69a3b5b3d0 | 5837:55404f3b0da1 |
---|---|
1 ## Copyright (C) 2001,2002 Kai Habel | |
2 ## | |
3 ## This program is free software; you can redistribute it and/or modify | |
4 ## it under the terms of the GNU General Public License as published by | |
5 ## the Free Software Foundation; either version 2 of the License, or | |
6 ## (at your option) any later version. | |
7 ## | |
8 ## This program is distributed in the hope that it will be useful, | |
9 ## but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 ## GNU General Public License for more details. | |
12 ## | |
13 ## You should have received a copy of the GNU General Public License | |
14 ## along with this program; if not, write to the Free Software | |
15 ## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
16 | |
17 ## -*- texinfo -*- | |
18 ## @deftypefn {Function File} {@var{pp} = } pchip (@var{x}, @var{y}) | |
19 ## @deftypefnx {Function File} {@var{yi} = } pchip (@var{x}, @var{y}, @var{xi}) | |
20 ## | |
21 ## Piecewise Cubic Hermite interpolating polynomial. Called with two | |
22 ## arguments, the piece-wise polynomial @var{pp} is returned, that may | |
23 ## later be used with @code{ppval} to evaluate the polynomial at | |
24 ## specific points. | |
25 ## | |
26 ## The variable @var{x} must be a strictly monotonic vector (either | |
27 ## increasing or decreasing). While @var{y} can be either a vector or | |
28 ## array. In the case where @var{y} is a vector, it must have a length | |
29 ## of @var{n}. If @var{y} is an array, then the size of @var{y} must | |
30 ## have the form | |
31 ## @iftex | |
32 ## @tex | |
33 ## $$[s_1, s_2, \cdots, s_k, n]$$ | |
34 ## @end tex | |
35 ## @end iftex | |
36 ## @ifinfo | |
37 ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} | |
38 ## @end ifinfo | |
39 ## The array is then reshaped internally to a matrix where to leading | |
40 ## dimension is given by | |
41 ## @iftex | |
42 ## @tex | |
43 ## $$s_1 s_2 \cdots s_k$$ | |
44 ## @end tex | |
45 ## @end iftex | |
46 ## @ifinfo | |
47 ## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} | |
48 ## @end ifinfo | |
49 ## and each row this matrix is then treated seperately. Note that this | |
50 ## is exactly the opposite treatment than @code{interp1} and is done | |
51 ## for compatiability. | |
52 ## | |
53 ## Called with a third input argument, @code{pchip} evaluates the | |
54 ## piece-wise polynomial at the points @var{xi}. There is an equivalence | |
55 ## between @code{ppval (pchip (@var{x}, @var{y}), @var{xi})} and | |
56 ## @code{pchip (@var{x}, @var{y}, @var{xi})}. | |
57 ## | |
58 ## @seealso{spline, ppval, mkpp, unmkpp} | |
59 ## @end deftypefn | |
60 | |
61 ## Author: Kai Habel <kai.habel@gmx.de> | |
62 ## Date: 9. mar 2001 | |
63 ## | |
64 ## S_k = a_k + b_k*x + c_k*x^2 + d_k*x^3; (spline polynom) | |
65 ## | |
66 ## 4 conditions: | |
67 ## S_k(x_k) = y_k; | |
68 ## S_k(x_k+1) = y_k+1; | |
69 ## S_k'(x_k) = y_k'; | |
70 ## S_k'(x_k+1) = y_k+1'; | |
71 | |
72 function ret = pchip (x, y, xi) | |
73 | |
74 if (nargin < 2 || nargin > 3) | |
75 print_usage (); | |
76 endif | |
77 | |
78 x = x(:); | |
79 n = length (x); | |
80 | |
81 ## Check the size and shape of y | |
82 ndy = ndims (y); | |
83 szy = size (y); | |
84 if (ndy == 2 && (szy(1) == 1 || szy(2) == 1)) | |
85 if (szy(1) == 1) | |
86 y = y'; | |
87 else | |
88 szy = fliplr (szy); | |
89 endif | |
90 else | |
91 y = reshape (y, [prod(szy(1:end-1)), szy(end)])'; | |
92 endif | |
93 | |
94 h = diff(x); | |
95 if all(h<0) | |
96 x = flipud(x); | |
97 h = diff(x); | |
98 y = flipud(y); | |
99 elseif (any(h <= 0)) | |
100 error("pchip: x must be strictly monotonic") | |
101 endif | |
102 | |
103 if (rows(y) != n) | |
104 error("pchip: size of x and y must match"); | |
105 endif | |
106 | |
107 [ry, cy] = size (y); | |
108 if (cy > 1) | |
109 h = kron (diff (x), ones (1, cy)); | |
110 endif | |
111 | |
112 dy = diff (y) ./ h; | |
113 | |
114 a = y; | |
115 b = __pchip_deriv__(x,y); | |
116 c = - (b(2:n, :) + 2 * b(1:n - 1, :)) ./ h + 3 * diff (a) ./ h .^ 2; | |
117 d = (b(1:n - 1, :) + b(2:n, :)) ./ h.^2 - 2 * diff (a) ./ h.^3; | |
118 | |
119 d = d(1:n - 1, :); c = c(1:n - 1, :); | |
120 b = b(1:n - 1, :); a = a(1:n - 1, :); | |
121 coeffs = [d(:), c(:), b(:), a(:)]; | |
122 pp = mkpp (x, coeffs, szy(1:end-1)); | |
123 | |
124 if (nargin == 2) | |
125 ret = pp; | |
126 else | |
127 ret = ppval (pp, xi); | |
128 endif | |
129 | |
130 endfunction | |
131 | |
132 %!demo | |
133 %! x = 0:8; | |
134 %! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0]; | |
135 %! xi = 0:0.01:8; | |
136 %! yspline = spline(x,y,xi); | |
137 %! ypchip = pchip(x,y,xi); | |
138 %! title("pchip and spline fit to discontinuous function"); | |
139 %! plot(xi,yspline,";spline;",... | |
140 %! xi,ypchip,"-;pchip;",... | |
141 %! x,y,"+;data;"); | |
142 %! %------------------------------------------------------------------- | |
143 %! % confirm that pchip agreed better to discontinuous data than spline | |
144 | |
145 %!shared x,y | |
146 %! x = 0:8; | |
147 %! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0]; | |
148 %!assert (pchip(x,y,x), y); | |
149 %!assert (pchip(x,y,x'), y'); | |
150 %!assert (pchip(x',y',x'), y'); | |
151 %!assert (pchip(x',y',x), y); | |
152 %!assert (isempty(pchip(x',y',[]))); | |
153 %!assert (isempty(pchip(x,y,[]))); | |
154 %!assert (pchip(x,[y;y],x), [pchip(x,y,x);pchip(x,y,x)]) |