Mercurial > hg > octave-nkf
comparison liboctave/dSparse.cc @ 5164:57077d0ddc8e
[project @ 2005-02-25 19:55:24 by jwe]
author | jwe |
---|---|
date | Fri, 25 Feb 2005 19:55:28 +0000 |
parents | |
children | dbeafbc0ff64 |
comparison
equal
deleted
inserted
replaced
5163:9f3299378193 | 5164:57077d0ddc8e |
---|---|
1 /* | |
2 | |
3 Copyright (C) 2004 David Bateman | |
4 Copyright (C) 1998-2004 Andy Adler | |
5 | |
6 Octave is free software; you can redistribute it and/or modify it | |
7 under the terms of the GNU General Public License as published by the | |
8 Free Software Foundation; either version 2, or (at your option) any | |
9 later version. | |
10 | |
11 Octave is distributed in the hope that it will be useful, but WITHOUT | |
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with this program; see the file COPYING. If not, write to the Free | |
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
19 | |
20 */ | |
21 | |
22 #ifdef HAVE_CONFIG_H | |
23 #include <config.h> | |
24 #endif | |
25 | |
26 #include <cfloat> | |
27 | |
28 #include <iostream> | |
29 #include <vector> | |
30 | |
31 #include "quit.h" | |
32 #include "lo-ieee.h" | |
33 #include "lo-mappers.h" | |
34 #include "f77-fcn.h" | |
35 #include "dRowVector.h" | |
36 | |
37 #include "CSparse.h" | |
38 #include "boolSparse.h" | |
39 #include "dSparse.h" | |
40 #include "oct-spparms.h" | |
41 #include "SparsedbleLU.h" | |
42 #include "SparseType.h" | |
43 | |
44 // External UMFPACK functions in C | |
45 extern "C" { | |
46 #include "umfpack.h" | |
47 } | |
48 | |
49 // Fortran functions we call. | |
50 extern "C" | |
51 { | |
52 F77_RET_T | |
53 F77_FUNC (dgbtrf, DGBTRF) (const int&, const int&, const int&, | |
54 const int&, double*, const int&, int*, int&); | |
55 | |
56 F77_RET_T | |
57 F77_FUNC (dgbtrs, DGBTRS) (F77_CONST_CHAR_ARG_DECL, const int&, | |
58 const int&, const int&, const int&, | |
59 const double*, const int&, | |
60 const int*, double*, const int&, int& | |
61 F77_CHAR_ARG_LEN_DECL); | |
62 | |
63 F77_RET_T | |
64 F77_FUNC (dgbcon, DGBCON) (F77_CONST_CHAR_ARG_DECL, const int&, | |
65 const int&, const int&, double*, | |
66 const int&, const int*, const double&, | |
67 double&, double*, int*, int& | |
68 F77_CHAR_ARG_LEN_DECL); | |
69 | |
70 F77_RET_T | |
71 F77_FUNC (dpbtrf, DPBTRF) (F77_CONST_CHAR_ARG_DECL, const int&, | |
72 const int&, double*, const int&, int& | |
73 F77_CHAR_ARG_LEN_DECL); | |
74 | |
75 F77_RET_T | |
76 F77_FUNC (dpbtrs, DPBTRS) (F77_CONST_CHAR_ARG_DECL, const int&, | |
77 const int&, const int&, double*, const int&, | |
78 double*, const int&, int& | |
79 F77_CHAR_ARG_LEN_DECL); | |
80 | |
81 F77_RET_T | |
82 F77_FUNC (dpbcon, DPBCON) (F77_CONST_CHAR_ARG_DECL, const int&, | |
83 const int&, double*, const int&, | |
84 const double&, double&, double*, int*, int& | |
85 F77_CHAR_ARG_LEN_DECL); | |
86 F77_RET_T | |
87 F77_FUNC (dptsv, DPTSV) (const int&, const int&, double*, double*, | |
88 double*, const int&, int&); | |
89 | |
90 F77_RET_T | |
91 F77_FUNC (dgtsv, DGTSV) (const int&, const int&, double*, double*, | |
92 double*, double*, const int&, int&); | |
93 | |
94 F77_RET_T | |
95 F77_FUNC (dgttrf, DGTTRF) (const int&, double*, double*, double*, double*, | |
96 int*, int&); | |
97 | |
98 F77_RET_T | |
99 F77_FUNC (dgttrs, DGTTRS) (F77_CONST_CHAR_ARG_DECL, const int&, | |
100 const int&, const double*, const double*, | |
101 const double*, const double*, const int*, | |
102 double *, const int&, int& | |
103 F77_CHAR_ARG_LEN_DECL); | |
104 | |
105 F77_RET_T | |
106 F77_FUNC (zptsv, ZPTSV) (const int&, const int&, Complex*, Complex*, | |
107 Complex*, const int&, int&); | |
108 | |
109 F77_RET_T | |
110 F77_FUNC (zgtsv, ZGTSV) (const int&, const int&, Complex*, Complex*, | |
111 Complex*, Complex*, const int&, int&); | |
112 | |
113 } | |
114 | |
115 SparseMatrix::SparseMatrix (const SparseBoolMatrix &a) | |
116 : MSparse<double> (a.rows (), a.cols (), a.nnz ()) | |
117 { | |
118 int nc = cols (); | |
119 int nz = nnz (); | |
120 | |
121 for (int i = 0; i < nc + 1; i++) | |
122 cidx (i) = a.cidx (i); | |
123 | |
124 for (int i = 0; i < nz; i++) | |
125 { | |
126 data (i) = a.data (i); | |
127 ridx (i) = a.ridx (i); | |
128 } | |
129 } | |
130 | |
131 bool | |
132 SparseMatrix::operator == (const SparseMatrix& a) const | |
133 { | |
134 int nr = rows (); | |
135 int nc = cols (); | |
136 int nz = nnz (); | |
137 int nr_a = a.rows (); | |
138 int nc_a = a.cols (); | |
139 int nz_a = a.nnz (); | |
140 | |
141 if (nr != nr_a || nc != nc_a || nz != nz_a) | |
142 return false; | |
143 | |
144 for (int i = 0; i < nc + 1; i++) | |
145 if (cidx(i) != a.cidx(i)) | |
146 return false; | |
147 | |
148 for (int i = 0; i < nz; i++) | |
149 if (data(i) != a.data(i) || ridx(i) != a.ridx(i)) | |
150 return false; | |
151 | |
152 return true; | |
153 } | |
154 | |
155 bool | |
156 SparseMatrix::operator != (const SparseMatrix& a) const | |
157 { | |
158 return !(*this == a); | |
159 } | |
160 | |
161 bool | |
162 SparseMatrix::is_symmetric (void) const | |
163 { | |
164 if (is_square () && rows () > 0) | |
165 { | |
166 for (int i = 0; i < rows (); i++) | |
167 for (int j = i+1; j < cols (); j++) | |
168 if (elem (i, j) != elem (j, i)) | |
169 return false; | |
170 | |
171 return true; | |
172 } | |
173 | |
174 return false; | |
175 } | |
176 | |
177 SparseMatrix& | |
178 SparseMatrix::insert (const SparseMatrix& a, int r, int c) | |
179 { | |
180 MSparse<double>::insert (a, r, c); | |
181 return *this; | |
182 } | |
183 | |
184 SparseMatrix | |
185 SparseMatrix::max (int dim) const | |
186 { | |
187 Array2<int> dummy_idx; | |
188 return max (dummy_idx, dim); | |
189 } | |
190 | |
191 SparseMatrix | |
192 SparseMatrix::max (Array2<int>& idx_arg, int dim) const | |
193 { | |
194 SparseMatrix result; | |
195 dim_vector dv = dims (); | |
196 | |
197 if (dv.numel () == 0 || dim > dv.length () || dim < 0) | |
198 return result; | |
199 | |
200 int nr = dv(0); | |
201 int nc = dv(1); | |
202 | |
203 if (dim == 0) | |
204 { | |
205 idx_arg.resize (1, nc); | |
206 int nel = 0; | |
207 for (int j = 0; j < nc; j++) | |
208 { | |
209 double tmp_max = octave_NaN; | |
210 int idx_j = 0; | |
211 for (int i = cidx(j); i < cidx(j+1); i++) | |
212 { | |
213 if (ridx(i) != idx_j) | |
214 break; | |
215 else | |
216 idx_j++; | |
217 } | |
218 | |
219 if (idx_j != nr) | |
220 tmp_max = 0.; | |
221 | |
222 for (int i = cidx(j); i < cidx(j+1); i++) | |
223 { | |
224 double tmp = data (i); | |
225 | |
226 if (octave_is_NaN_or_NA (tmp)) | |
227 continue; | |
228 else if (octave_is_NaN_or_NA (tmp_max) || tmp > tmp_max) | |
229 { | |
230 idx_j = ridx (i); | |
231 tmp_max = tmp; | |
232 } | |
233 | |
234 } | |
235 | |
236 idx_arg.elem (j) = octave_is_NaN_or_NA (tmp_max) ? 0 : idx_j; | |
237 if (tmp_max != 0.) | |
238 nel++; | |
239 } | |
240 | |
241 result = SparseMatrix (1, nc, nel); | |
242 | |
243 int ii = 0; | |
244 result.xcidx (0) = 0; | |
245 for (int j = 0; j < nc; j++) | |
246 { | |
247 double tmp = elem (idx_arg(j), j); | |
248 if (tmp != 0.) | |
249 { | |
250 result.xdata (ii) = tmp; | |
251 result.xridx (ii++) = 0; | |
252 } | |
253 result.xcidx (j+1) = ii; | |
254 | |
255 } | |
256 } | |
257 else | |
258 { | |
259 idx_arg.resize (nr, 1, 0); | |
260 | |
261 for (int i = cidx(0); i < cidx(1); i++) | |
262 idx_arg.elem(ridx(i)) = -1; | |
263 | |
264 for (int j = 0; j < nc; j++) | |
265 for (int i = 0; i < nr; i++) | |
266 { | |
267 if (idx_arg.elem(i) != -1) | |
268 continue; | |
269 bool found = false; | |
270 for (int k = cidx(j); k < cidx(j+1); k++) | |
271 if (ridx(k) == i) | |
272 { | |
273 found = true; | |
274 break; | |
275 } | |
276 | |
277 if (!found) | |
278 idx_arg.elem(i) = j; | |
279 | |
280 } | |
281 | |
282 for (int j = 0; j < nc; j++) | |
283 { | |
284 for (int i = cidx(j); i < cidx(j+1); i++) | |
285 { | |
286 int ir = ridx (i); | |
287 int ix = idx_arg.elem (ir); | |
288 double tmp = data (i); | |
289 | |
290 if (octave_is_NaN_or_NA (tmp)) | |
291 continue; | |
292 else if (ix == -1 || tmp > elem (ir, ix)) | |
293 idx_arg.elem (ir) = j; | |
294 } | |
295 } | |
296 | |
297 int nel = 0; | |
298 for (int j = 0; j < nr; j++) | |
299 if (idx_arg.elem(j) == -1 || elem (j, idx_arg.elem (j)) != 0.) | |
300 nel++; | |
301 | |
302 result = SparseMatrix (nr, 1, nel); | |
303 | |
304 int ii = 0; | |
305 result.xcidx (0) = 0; | |
306 result.xcidx (1) = nel; | |
307 for (int j = 0; j < nr; j++) | |
308 { | |
309 if (idx_arg(j) == -1) | |
310 { | |
311 idx_arg(j) = 0; | |
312 result.xdata (ii) = octave_NaN; | |
313 result.xridx (ii++) = j; | |
314 } | |
315 else | |
316 { | |
317 double tmp = elem (j, idx_arg(j)); | |
318 if (tmp != 0.) | |
319 { | |
320 result.xdata (ii) = tmp; | |
321 result.xridx (ii++) = j; | |
322 } | |
323 } | |
324 } | |
325 } | |
326 | |
327 return result; | |
328 } | |
329 | |
330 SparseMatrix | |
331 SparseMatrix::min (int dim) const | |
332 { | |
333 Array2<int> dummy_idx; | |
334 return min (dummy_idx, dim); | |
335 } | |
336 | |
337 SparseMatrix | |
338 SparseMatrix::min (Array2<int>& idx_arg, int dim) const | |
339 { | |
340 SparseMatrix result; | |
341 dim_vector dv = dims (); | |
342 | |
343 if (dv.numel () == 0 || dim > dv.length () || dim < 0) | |
344 return result; | |
345 | |
346 int nr = dv(0); | |
347 int nc = dv(1); | |
348 | |
349 if (dim == 0) | |
350 { | |
351 idx_arg.resize (1, nc); | |
352 int nel = 0; | |
353 for (int j = 0; j < nc; j++) | |
354 { | |
355 double tmp_min = octave_NaN; | |
356 int idx_j = 0; | |
357 for (int i = cidx(j); i < cidx(j+1); i++) | |
358 { | |
359 if (ridx(i) != idx_j) | |
360 break; | |
361 else | |
362 idx_j++; | |
363 } | |
364 | |
365 if (idx_j != nr) | |
366 tmp_min = 0.; | |
367 | |
368 for (int i = cidx(j); i < cidx(j+1); i++) | |
369 { | |
370 double tmp = data (i); | |
371 | |
372 if (octave_is_NaN_or_NA (tmp)) | |
373 continue; | |
374 else if (octave_is_NaN_or_NA (tmp_min) || tmp < tmp_min) | |
375 { | |
376 idx_j = ridx (i); | |
377 tmp_min = tmp; | |
378 } | |
379 | |
380 } | |
381 | |
382 idx_arg.elem (j) = octave_is_NaN_or_NA (tmp_min) ? 0 : idx_j; | |
383 if (tmp_min != 0.) | |
384 nel++; | |
385 } | |
386 | |
387 result = SparseMatrix (1, nc, nel); | |
388 | |
389 int ii = 0; | |
390 result.xcidx (0) = 0; | |
391 for (int j = 0; j < nc; j++) | |
392 { | |
393 double tmp = elem (idx_arg(j), j); | |
394 if (tmp != 0.) | |
395 { | |
396 result.xdata (ii) = tmp; | |
397 result.xridx (ii++) = 0; | |
398 } | |
399 result.xcidx (j+1) = ii; | |
400 | |
401 } | |
402 } | |
403 else | |
404 { | |
405 idx_arg.resize (nr, 1, 0); | |
406 | |
407 for (int i = cidx(0); i < cidx(1); i++) | |
408 idx_arg.elem(ridx(i)) = -1; | |
409 | |
410 for (int j = 0; j < nc; j++) | |
411 for (int i = 0; i < nr; i++) | |
412 { | |
413 if (idx_arg.elem(i) != -1) | |
414 continue; | |
415 bool found = false; | |
416 for (int k = cidx(j); k < cidx(j+1); k++) | |
417 if (ridx(k) == i) | |
418 { | |
419 found = true; | |
420 break; | |
421 } | |
422 | |
423 if (!found) | |
424 idx_arg.elem(i) = j; | |
425 | |
426 } | |
427 | |
428 for (int j = 0; j < nc; j++) | |
429 { | |
430 for (int i = cidx(j); i < cidx(j+1); i++) | |
431 { | |
432 int ir = ridx (i); | |
433 int ix = idx_arg.elem (ir); | |
434 double tmp = data (i); | |
435 | |
436 if (octave_is_NaN_or_NA (tmp)) | |
437 continue; | |
438 else if (ix == -1 || tmp < elem (ir, ix)) | |
439 idx_arg.elem (ir) = j; | |
440 } | |
441 } | |
442 | |
443 int nel = 0; | |
444 for (int j = 0; j < nr; j++) | |
445 if (idx_arg.elem(j) == -1 || elem (j, idx_arg.elem (j)) != 0.) | |
446 nel++; | |
447 | |
448 result = SparseMatrix (nr, 1, nel); | |
449 | |
450 int ii = 0; | |
451 result.xcidx (0) = 0; | |
452 result.xcidx (1) = nel; | |
453 for (int j = 0; j < nr; j++) | |
454 { | |
455 if (idx_arg(j) == -1) | |
456 { | |
457 idx_arg(j) = 0; | |
458 result.xdata (ii) = octave_NaN; | |
459 result.xridx (ii++) = j; | |
460 } | |
461 else | |
462 { | |
463 double tmp = elem (j, idx_arg(j)); | |
464 if (tmp != 0.) | |
465 { | |
466 result.xdata (ii) = tmp; | |
467 result.xridx (ii++) = j; | |
468 } | |
469 } | |
470 } | |
471 } | |
472 | |
473 return result; | |
474 } | |
475 | |
476 SparseMatrix | |
477 SparseMatrix::concat (const SparseMatrix& rb, const Array<int>& ra_idx) | |
478 { | |
479 // Don't use numel to avoid all possiblity of an overflow | |
480 if (rb.rows () > 0 && rb.cols () > 0) | |
481 insert (rb, ra_idx(0), ra_idx(1)); | |
482 return *this; | |
483 } | |
484 | |
485 SparseComplexMatrix | |
486 SparseMatrix::concat (const SparseComplexMatrix& rb, const Array<int>& ra_idx) | |
487 { | |
488 SparseComplexMatrix retval (*this); | |
489 if (rb.rows () > 0 && rb.cols () > 0) | |
490 retval.insert (rb, ra_idx(0), ra_idx(1)); | |
491 return retval; | |
492 } | |
493 | |
494 SparseMatrix | |
495 real (const SparseComplexMatrix& a) | |
496 { | |
497 int nr = a.rows (); | |
498 int nc = a.cols (); | |
499 int nz = a.nnz (); | |
500 SparseMatrix r (nr, nc, nz); | |
501 | |
502 for (int i = 0; i < nc +1; i++) | |
503 r.cidx(i) = a.cidx(i); | |
504 | |
505 for (int i = 0; i < nz; i++) | |
506 { | |
507 r.data(i) = real (a.data(i)); | |
508 r.ridx(i) = a.ridx(i); | |
509 } | |
510 | |
511 return r; | |
512 } | |
513 | |
514 SparseMatrix | |
515 imag (const SparseComplexMatrix& a) | |
516 { | |
517 int nr = a.rows (); | |
518 int nc = a.cols (); | |
519 int nz = a.nnz (); | |
520 SparseMatrix r (nr, nc, nz); | |
521 | |
522 for (int i = 0; i < nc +1; i++) | |
523 r.cidx(i) = a.cidx(i); | |
524 | |
525 for (int i = 0; i < nz; i++) | |
526 { | |
527 r.data(i) = imag (a.data(i)); | |
528 r.ridx(i) = a.ridx(i); | |
529 } | |
530 | |
531 return r; | |
532 } | |
533 | |
534 SparseMatrix | |
535 atan2 (const double& x, const SparseMatrix& y) | |
536 { | |
537 int nr = y.rows (); | |
538 int nc = y.cols (); | |
539 | |
540 if (x == 0.) | |
541 return SparseMatrix (nr, nc); | |
542 else | |
543 { | |
544 // Its going to be basically full, so this is probably the | |
545 // best way to handle it. | |
546 Matrix tmp (nr, nc, atan2 (x, 0.)); | |
547 | |
548 for (int j = 0; j < nc; j++) | |
549 for (int i = y.cidx (j); i < y.cidx (j+1); i++) | |
550 tmp.elem (y.ridx(i), j) = atan2 (x, y.data(i)); | |
551 | |
552 return SparseMatrix (tmp); | |
553 } | |
554 } | |
555 | |
556 SparseMatrix | |
557 atan2 (const SparseMatrix& x, const double& y) | |
558 { | |
559 int nr = x.rows (); | |
560 int nc = x.cols (); | |
561 int nz = x.nnz (); | |
562 | |
563 SparseMatrix retval (nr, nc, nz); | |
564 | |
565 int ii = 0; | |
566 retval.xcidx(0) = 0; | |
567 for (int i = 0; i < nc; i++) | |
568 { | |
569 for (int j = x.cidx(i); j < x.cidx(i+1); j++) | |
570 { | |
571 double tmp = atan2 (x.data(j), y); | |
572 if (tmp != 0.) | |
573 { | |
574 retval.xdata (ii) = tmp; | |
575 retval.xridx (ii++) = x.ridx (j); | |
576 } | |
577 } | |
578 retval.xcidx (i+1) = ii; | |
579 } | |
580 | |
581 if (ii != nz) | |
582 { | |
583 SparseMatrix retval2 (nr, nc, ii); | |
584 for (int i = 0; i < nc+1; i++) | |
585 retval2.xcidx (i) = retval.cidx (i); | |
586 for (int i = 0; i < ii; i++) | |
587 { | |
588 retval2.xdata (i) = retval.data (i); | |
589 retval2.xridx (i) = retval.ridx (i); | |
590 } | |
591 return retval2; | |
592 } | |
593 else | |
594 return retval; | |
595 } | |
596 | |
597 SparseMatrix | |
598 atan2 (const SparseMatrix& x, const SparseMatrix& y) | |
599 { | |
600 SparseMatrix r; | |
601 | |
602 if ((x.rows() == y.rows()) && (x.cols() == y.cols())) | |
603 { | |
604 int x_nr = x.rows (); | |
605 int x_nc = x.cols (); | |
606 | |
607 int y_nr = y.rows (); | |
608 int y_nc = y.cols (); | |
609 | |
610 if (x_nr != y_nr || x_nc != y_nc) | |
611 gripe_nonconformant ("atan2", x_nr, x_nc, y_nr, y_nc); | |
612 else | |
613 { | |
614 r = SparseMatrix (x_nr, x_nc, (x.nnz () + y.nnz ())); | |
615 | |
616 int jx = 0; | |
617 r.cidx (0) = 0; | |
618 for (int i = 0 ; i < x_nc ; i++) | |
619 { | |
620 int ja = x.cidx(i); | |
621 int ja_max = x.cidx(i+1); | |
622 bool ja_lt_max= ja < ja_max; | |
623 | |
624 int jb = y.cidx(i); | |
625 int jb_max = y.cidx(i+1); | |
626 bool jb_lt_max = jb < jb_max; | |
627 | |
628 while (ja_lt_max || jb_lt_max ) | |
629 { | |
630 OCTAVE_QUIT; | |
631 if ((! jb_lt_max) || | |
632 (ja_lt_max && (x.ridx(ja) < y.ridx(jb)))) | |
633 { | |
634 r.ridx(jx) = x.ridx(ja); | |
635 r.data(jx) = atan2 (x.data(ja), 0.); | |
636 jx++; | |
637 ja++; | |
638 ja_lt_max= ja < ja_max; | |
639 } | |
640 else if (( !ja_lt_max ) || | |
641 (jb_lt_max && (y.ridx(jb) < x.ridx(ja)) ) ) | |
642 { | |
643 jb++; | |
644 jb_lt_max= jb < jb_max; | |
645 } | |
646 else | |
647 { | |
648 double tmp = atan2 (x.data(ja), y.data(jb)); | |
649 if (tmp != 0.) | |
650 { | |
651 r.data(jx) = tmp; | |
652 r.ridx(jx) = x.ridx(ja); | |
653 jx++; | |
654 } | |
655 ja++; | |
656 ja_lt_max= ja < ja_max; | |
657 jb++; | |
658 jb_lt_max= jb < jb_max; | |
659 } | |
660 } | |
661 r.cidx(i+1) = jx; | |
662 } | |
663 | |
664 r.maybe_compress (); | |
665 } | |
666 } | |
667 else | |
668 (*current_liboctave_error_handler) ("matrix size mismatch"); | |
669 | |
670 return r; | |
671 } | |
672 | |
673 SparseMatrix | |
674 SparseMatrix::inverse (void) const | |
675 { | |
676 int info; | |
677 double rcond; | |
678 return inverse (info, rcond, 0, 0); | |
679 } | |
680 | |
681 SparseMatrix | |
682 SparseMatrix::inverse (int& info) const | |
683 { | |
684 double rcond; | |
685 return inverse (info, rcond, 0, 0); | |
686 } | |
687 | |
688 SparseMatrix | |
689 SparseMatrix::inverse (int& info, double& rcond, int force, int calc_cond) const | |
690 { | |
691 info = -1; | |
692 (*current_liboctave_error_handler) | |
693 ("SparseMatrix::inverse not implemented yet"); | |
694 return SparseMatrix (); | |
695 } | |
696 | |
697 DET | |
698 SparseMatrix::determinant (void) const | |
699 { | |
700 int info; | |
701 double rcond; | |
702 return determinant (info, rcond, 0); | |
703 } | |
704 | |
705 DET | |
706 SparseMatrix::determinant (int& info) const | |
707 { | |
708 double rcond; | |
709 return determinant (info, rcond, 0); | |
710 } | |
711 | |
712 DET | |
713 SparseMatrix::determinant (int& err, double& rcond, int) const | |
714 { | |
715 DET retval; | |
716 | |
717 int nr = rows (); | |
718 int nc = cols (); | |
719 | |
720 if (nr == 0 || nc == 0 || nr != nc) | |
721 { | |
722 double d[2]; | |
723 d[0] = 1.0; | |
724 d[1] = 0.0; | |
725 retval = DET (d); | |
726 } | |
727 else | |
728 { | |
729 err = 0; | |
730 | |
731 // Setup the control parameters | |
732 Matrix Control (UMFPACK_CONTROL, 1); | |
733 double *control = Control.fortran_vec (); | |
734 umfpack_di_defaults (control); | |
735 | |
736 double tmp = Voctave_sparse_controls.get_key ("spumoni"); | |
737 if (!xisnan (tmp)) | |
738 Control (UMFPACK_PRL) = tmp; | |
739 | |
740 tmp = Voctave_sparse_controls.get_key ("piv_tol"); | |
741 if (!xisnan (tmp)) | |
742 { | |
743 Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; | |
744 Control (UMFPACK_PIVOT_TOLERANCE) = tmp; | |
745 } | |
746 | |
747 // Set whether we are allowed to modify Q or not | |
748 tmp = Voctave_sparse_controls.get_key ("autoamd"); | |
749 if (!xisnan (tmp)) | |
750 Control (UMFPACK_FIXQ) = tmp; | |
751 | |
752 // Turn-off UMFPACK scaling for LU | |
753 Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE; | |
754 | |
755 umfpack_di_report_control (control); | |
756 | |
757 const int *Ap = cidx (); | |
758 const int *Ai = ridx (); | |
759 const double *Ax = data (); | |
760 | |
761 umfpack_di_report_matrix (nr, nc, Ap, Ai, Ax, 1, control); | |
762 | |
763 void *Symbolic; | |
764 Matrix Info (1, UMFPACK_INFO); | |
765 double *info = Info.fortran_vec (); | |
766 int status = umfpack_di_qsymbolic (nr, nc, Ap, Ai, Ax, NULL, | |
767 &Symbolic, control, info); | |
768 | |
769 if (status < 0) | |
770 { | |
771 (*current_liboctave_error_handler) | |
772 ("SparseMatrix::determinant symbolic factorization failed"); | |
773 | |
774 umfpack_di_report_status (control, status); | |
775 umfpack_di_report_info (control, info); | |
776 | |
777 umfpack_di_free_symbolic (&Symbolic) ; | |
778 } | |
779 else | |
780 { | |
781 umfpack_di_report_symbolic (Symbolic, control); | |
782 | |
783 void *Numeric; | |
784 status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, | |
785 control, info) ; | |
786 umfpack_di_free_symbolic (&Symbolic) ; | |
787 | |
788 rcond = Info (UMFPACK_RCOND); | |
789 | |
790 if (status < 0) | |
791 { | |
792 (*current_liboctave_error_handler) | |
793 ("SparseMatrix::determinant numeric factorization failed"); | |
794 | |
795 umfpack_di_report_status (control, status); | |
796 umfpack_di_report_info (control, info); | |
797 | |
798 umfpack_di_free_numeric (&Numeric); | |
799 } | |
800 else | |
801 { | |
802 umfpack_di_report_numeric (Numeric, control); | |
803 | |
804 double d[2]; | |
805 | |
806 status = umfpack_di_get_determinant (&d[0], &d[1], Numeric, | |
807 info); | |
808 | |
809 if (status < 0) | |
810 { | |
811 (*current_liboctave_error_handler) | |
812 ("SparseMatrix::determinant error calculating determinant"); | |
813 | |
814 umfpack_di_report_status (control, status); | |
815 umfpack_di_report_info (control, info); | |
816 | |
817 umfpack_di_free_numeric (&Numeric); | |
818 } | |
819 else | |
820 retval = DET (d); | |
821 } | |
822 } | |
823 } | |
824 | |
825 return retval; | |
826 } | |
827 | |
828 Matrix | |
829 SparseMatrix::dsolve (SparseType &mattype, const Matrix& b, int& err, | |
830 double& rcond, solve_singularity_handler) const | |
831 { | |
832 Matrix retval; | |
833 | |
834 int nr = rows (); | |
835 int nc = cols (); | |
836 err = 0; | |
837 | |
838 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
839 (*current_liboctave_error_handler) | |
840 ("matrix dimension mismatch solution of linear equations"); | |
841 else | |
842 { | |
843 // Print spparms("spumoni") info if requested | |
844 int typ = mattype.type (); | |
845 mattype.info (); | |
846 | |
847 if (typ == SparseType::Diagonal || | |
848 typ == SparseType::Permuted_Diagonal) | |
849 { | |
850 retval.resize (b.rows (), b.cols()); | |
851 if (typ == SparseType::Diagonal) | |
852 for (int j = 0; j < b.cols(); j++) | |
853 for (int i = 0; i < nr; i++) | |
854 retval(i,j) = b(i,j) / data (i); | |
855 else | |
856 for (int j = 0; j < b.cols(); j++) | |
857 for (int i = 0; i < nr; i++) | |
858 retval(i,j) = b(ridx(i),j) / data (i); | |
859 | |
860 double dmax = 0., dmin = octave_Inf; | |
861 for (int i = 0; i < nr; i++) | |
862 { | |
863 double tmp = fabs(data(i)); | |
864 if (tmp > dmax) | |
865 dmax = tmp; | |
866 if (tmp < dmin) | |
867 dmin = tmp; | |
868 } | |
869 rcond = dmin / dmax; | |
870 } | |
871 else | |
872 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
873 } | |
874 | |
875 return retval; | |
876 } | |
877 | |
878 SparseMatrix | |
879 SparseMatrix::dsolve (SparseType &mattype, const SparseMatrix& b, int& err, | |
880 double& rcond, solve_singularity_handler) const | |
881 { | |
882 SparseMatrix retval; | |
883 | |
884 int nr = rows (); | |
885 int nc = cols (); | |
886 err = 0; | |
887 | |
888 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
889 (*current_liboctave_error_handler) | |
890 ("matrix dimension mismatch solution of linear equations"); | |
891 else | |
892 { | |
893 // Print spparms("spumoni") info if requested | |
894 int typ = mattype.type (); | |
895 mattype.info (); | |
896 | |
897 if (typ == SparseType::Diagonal || | |
898 typ == SparseType::Permuted_Diagonal) | |
899 { | |
900 int b_nr = b.rows (); | |
901 int b_nc = b.cols (); | |
902 int b_nz = b.nnz (); | |
903 retval = SparseMatrix (b_nr, b_nc, b_nz); | |
904 | |
905 retval.xcidx(0) = 0; | |
906 int ii = 0; | |
907 if (typ == SparseType::Diagonal) | |
908 for (int j = 0; j < b.cols(); j++) | |
909 { | |
910 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
911 { | |
912 retval.xridx (ii) = b.ridx(i); | |
913 retval.xdata (ii++) = b.data(i) / data (b.ridx (i)); | |
914 } | |
915 retval.xcidx(j+1) = ii; | |
916 } | |
917 else | |
918 for (int j = 0; j < b.cols(); j++) | |
919 { | |
920 for (int i = 0; i < nr; i++) | |
921 { | |
922 bool found = false; | |
923 int k; | |
924 for (k = b.cidx(j); k < b.cidx(j+1); k++) | |
925 if (ridx(i) == b.ridx(k)) | |
926 { | |
927 found = true; | |
928 break; | |
929 } | |
930 if (found) | |
931 { | |
932 retval.xridx (ii) = i; | |
933 retval.xdata (ii++) = b.data(k) / data (i); | |
934 } | |
935 } | |
936 retval.xcidx(j+1) = ii; | |
937 } | |
938 | |
939 double dmax = 0., dmin = octave_Inf; | |
940 for (int i = 0; i < nr; i++) | |
941 { | |
942 double tmp = fabs(data(i)); | |
943 if (tmp > dmax) | |
944 dmax = tmp; | |
945 if (tmp < dmin) | |
946 dmin = tmp; | |
947 } | |
948 rcond = dmin / dmax; | |
949 } | |
950 else | |
951 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
952 } | |
953 | |
954 return retval; | |
955 } | |
956 | |
957 ComplexMatrix | |
958 SparseMatrix::dsolve (SparseType &mattype, const ComplexMatrix& b, int& err, | |
959 double& rcond, solve_singularity_handler) const | |
960 { | |
961 ComplexMatrix retval; | |
962 | |
963 int nr = rows (); | |
964 int nc = cols (); | |
965 err = 0; | |
966 | |
967 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
968 (*current_liboctave_error_handler) | |
969 ("matrix dimension mismatch solution of linear equations"); | |
970 else | |
971 { | |
972 // Print spparms("spumoni") info if requested | |
973 int typ = mattype.type (); | |
974 mattype.info (); | |
975 | |
976 if (typ == SparseType::Diagonal || | |
977 typ == SparseType::Permuted_Diagonal) | |
978 { | |
979 retval.resize (b.rows (), b.cols()); | |
980 if (typ == SparseType::Diagonal) | |
981 for (int j = 0; j < b.cols(); j++) | |
982 for (int i = 0; i < nr; i++) | |
983 retval(i,j) = b(i,j) / data (i); | |
984 else | |
985 for (int j = 0; j < b.cols(); j++) | |
986 for (int i = 0; i < nr; i++) | |
987 retval(i,j) = b(ridx(i),j) / data (i); | |
988 | |
989 double dmax = 0., dmin = octave_Inf; | |
990 for (int i = 0; i < nr; i++) | |
991 { | |
992 double tmp = fabs(data(i)); | |
993 if (tmp > dmax) | |
994 dmax = tmp; | |
995 if (tmp < dmin) | |
996 dmin = tmp; | |
997 } | |
998 rcond = dmin / dmax; | |
999 } | |
1000 else | |
1001 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
1002 } | |
1003 | |
1004 return retval; | |
1005 } | |
1006 | |
1007 SparseComplexMatrix | |
1008 SparseMatrix::dsolve (SparseType &mattype, const SparseComplexMatrix& b, | |
1009 int& err, double& rcond, | |
1010 solve_singularity_handler) const | |
1011 { | |
1012 SparseComplexMatrix retval; | |
1013 | |
1014 int nr = rows (); | |
1015 int nc = cols (); | |
1016 err = 0; | |
1017 | |
1018 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
1019 (*current_liboctave_error_handler) | |
1020 ("matrix dimension mismatch solution of linear equations"); | |
1021 else | |
1022 { | |
1023 // Print spparms("spumoni") info if requested | |
1024 int typ = mattype.type (); | |
1025 mattype.info (); | |
1026 | |
1027 if (typ == SparseType::Diagonal || | |
1028 typ == SparseType::Permuted_Diagonal) | |
1029 { | |
1030 int b_nr = b.rows (); | |
1031 int b_nc = b.cols (); | |
1032 int b_nz = b.nnz (); | |
1033 retval = SparseComplexMatrix (b_nr, b_nc, b_nz); | |
1034 | |
1035 retval.xcidx(0) = 0; | |
1036 int ii = 0; | |
1037 if (typ == SparseType::Diagonal) | |
1038 for (int j = 0; j < b.cols(); j++) | |
1039 { | |
1040 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
1041 { | |
1042 retval.xridx (ii) = b.ridx(i); | |
1043 retval.xdata (ii++) = b.data(i) / data (b.ridx (i)); | |
1044 } | |
1045 retval.xcidx(j+1) = ii; | |
1046 } | |
1047 else | |
1048 for (int j = 0; j < b.cols(); j++) | |
1049 { | |
1050 for (int i = 0; i < nr; i++) | |
1051 { | |
1052 bool found = false; | |
1053 int k; | |
1054 for (k = b.cidx(j); k < b.cidx(j+1); k++) | |
1055 if (ridx(i) == b.ridx(k)) | |
1056 { | |
1057 found = true; | |
1058 break; | |
1059 } | |
1060 if (found) | |
1061 { | |
1062 retval.xridx (ii) = i; | |
1063 retval.xdata (ii++) = b.data(k) / data (i); | |
1064 } | |
1065 } | |
1066 retval.xcidx(j+1) = ii; | |
1067 } | |
1068 | |
1069 double dmax = 0., dmin = octave_Inf; | |
1070 for (int i = 0; i < nr; i++) | |
1071 { | |
1072 double tmp = fabs(data(i)); | |
1073 if (tmp > dmax) | |
1074 dmax = tmp; | |
1075 if (tmp < dmin) | |
1076 dmin = tmp; | |
1077 } | |
1078 rcond = dmin / dmax; | |
1079 } | |
1080 else | |
1081 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
1082 } | |
1083 | |
1084 return retval; | |
1085 } | |
1086 | |
1087 Matrix | |
1088 SparseMatrix::utsolve (SparseType &mattype, const Matrix& b, int& err, | |
1089 double& rcond, | |
1090 solve_singularity_handler sing_handler) const | |
1091 { | |
1092 Matrix retval; | |
1093 | |
1094 int nr = rows (); | |
1095 int nc = cols (); | |
1096 err = 0; | |
1097 | |
1098 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
1099 (*current_liboctave_error_handler) | |
1100 ("matrix dimension mismatch solution of linear equations"); | |
1101 else | |
1102 { | |
1103 // Print spparms("spumoni") info if requested | |
1104 int typ = mattype.type (); | |
1105 mattype.info (); | |
1106 | |
1107 if (typ == SparseType::Permuted_Upper || | |
1108 typ == SparseType::Upper) | |
1109 { | |
1110 double anorm = 0.; | |
1111 double ainvnorm = 0.; | |
1112 int b_cols = b.cols (); | |
1113 rcond = 0.; | |
1114 | |
1115 // Calculate the 1-norm of matrix for rcond calculation | |
1116 for (int j = 0; j < nr; j++) | |
1117 { | |
1118 double atmp = 0.; | |
1119 for (int i = cidx(j); i < cidx(j+1); i++) | |
1120 atmp += fabs(data(i)); | |
1121 if (atmp > anorm) | |
1122 anorm = atmp; | |
1123 } | |
1124 | |
1125 if (typ == SparseType::Permuted_Upper) | |
1126 { | |
1127 retval.resize (b.rows (), b.cols ()); | |
1128 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
1129 int *p_perm = mattype.triangular_row_perm (); | |
1130 int *q_perm = mattype.triangular_col_perm (); | |
1131 | |
1132 (*current_liboctave_warning_handler) | |
1133 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
1134 | |
1135 for (int j = 0; j < b_cols; j++) | |
1136 { | |
1137 for (int i = 0; i < nr; i++) | |
1138 work[i] = b(i,j); | |
1139 | |
1140 for (int k = nr-1; k >= 0; k--) | |
1141 { | |
1142 int iidx = q_perm[k]; | |
1143 if (work[iidx] != 0.) | |
1144 { | |
1145 if (ridx(cidx(iidx+1)-1) != iidx) | |
1146 { | |
1147 err = -2; | |
1148 goto triangular_error; | |
1149 } | |
1150 | |
1151 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
1152 work[iidx] = tmp; | |
1153 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1154 { | |
1155 int idx2 = q_perm[ridx(i)]; | |
1156 work[idx2] = | |
1157 work[idx2] - tmp * data(i); | |
1158 } | |
1159 } | |
1160 } | |
1161 | |
1162 for (int i = 0; i < nr; i++) | |
1163 retval (i, j) = work[p_perm[i]]; | |
1164 } | |
1165 | |
1166 // Calculation of 1-norm of inv(*this) | |
1167 for (int i = 0; i < nr; i++) | |
1168 work[i] = 0.; | |
1169 | |
1170 for (int j = 0; j < nr; j++) | |
1171 { | |
1172 work[q_perm[j]] = 1.; | |
1173 | |
1174 for (int k = j; k >= 0; k--) | |
1175 { | |
1176 int iidx = q_perm[k]; | |
1177 | |
1178 if (work[iidx] != 0.) | |
1179 { | |
1180 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
1181 work[iidx] = tmp; | |
1182 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1183 { | |
1184 int idx2 = q_perm[ridx(i)]; | |
1185 work[idx2] = work[idx2] - tmp * data(i); | |
1186 } | |
1187 } | |
1188 } | |
1189 double atmp = 0; | |
1190 for (int i = 0; i < j+1; i++) | |
1191 { | |
1192 atmp += fabs(work[i]); | |
1193 work[i] = 0.; | |
1194 } | |
1195 if (atmp > ainvnorm) | |
1196 ainvnorm = atmp; | |
1197 } | |
1198 } | |
1199 else | |
1200 { | |
1201 retval = b; | |
1202 double *x_vec = retval.fortran_vec (); | |
1203 | |
1204 for (int j = 0; j < b_cols; j++) | |
1205 { | |
1206 int offset = j * nr; | |
1207 for (int k = nr-1; k >= 0; k--) | |
1208 { | |
1209 if (x_vec[k+offset] != 0.) | |
1210 { | |
1211 if (ridx(cidx(k+1)-1) != k) | |
1212 { | |
1213 err = -2; | |
1214 goto triangular_error; | |
1215 } | |
1216 | |
1217 double tmp = x_vec[k+offset] / | |
1218 data(cidx(k+1)-1); | |
1219 x_vec[k+offset] = tmp; | |
1220 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1221 { | |
1222 int iidx = ridx(i); | |
1223 x_vec[iidx+offset] = | |
1224 x_vec[iidx+offset] - tmp * data(i); | |
1225 } | |
1226 } | |
1227 } | |
1228 } | |
1229 | |
1230 // Calculation of 1-norm of inv(*this) | |
1231 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
1232 for (int i = 0; i < nr; i++) | |
1233 work[i] = 0.; | |
1234 | |
1235 for (int j = 0; j < nr; j++) | |
1236 { | |
1237 work[j] = 1.; | |
1238 | |
1239 for (int k = j; k >= 0; k--) | |
1240 { | |
1241 if (work[k] != 0.) | |
1242 { | |
1243 double tmp = work[k] / data(cidx(k+1)-1); | |
1244 work[k] = tmp; | |
1245 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1246 { | |
1247 int iidx = ridx(i); | |
1248 work[iidx] = work[iidx] - tmp * data(i); | |
1249 } | |
1250 } | |
1251 } | |
1252 double atmp = 0; | |
1253 for (int i = 0; i < j+1; i++) | |
1254 { | |
1255 atmp += fabs(work[i]); | |
1256 work[i] = 0.; | |
1257 } | |
1258 if (atmp > ainvnorm) | |
1259 ainvnorm = atmp; | |
1260 } | |
1261 } | |
1262 | |
1263 rcond = 1. / ainvnorm / anorm; | |
1264 | |
1265 triangular_error: | |
1266 if (err != 0) | |
1267 { | |
1268 if (sing_handler) | |
1269 sing_handler (rcond); | |
1270 else | |
1271 (*current_liboctave_error_handler) | |
1272 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
1273 rcond); | |
1274 } | |
1275 | |
1276 volatile double rcond_plus_one = rcond + 1.0; | |
1277 | |
1278 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
1279 { | |
1280 err = -2; | |
1281 | |
1282 if (sing_handler) | |
1283 sing_handler (rcond); | |
1284 else | |
1285 (*current_liboctave_error_handler) | |
1286 ("matrix singular to machine precision, rcond = %g", | |
1287 rcond); | |
1288 } | |
1289 } | |
1290 else | |
1291 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
1292 } | |
1293 | |
1294 return retval; | |
1295 } | |
1296 | |
1297 SparseMatrix | |
1298 SparseMatrix::utsolve (SparseType &mattype, const SparseMatrix& b, int& err, | |
1299 double& rcond, solve_singularity_handler sing_handler) const | |
1300 { | |
1301 SparseMatrix retval; | |
1302 | |
1303 int nr = rows (); | |
1304 int nc = cols (); | |
1305 err = 0; | |
1306 | |
1307 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
1308 (*current_liboctave_error_handler) | |
1309 ("matrix dimension mismatch solution of linear equations"); | |
1310 else | |
1311 { | |
1312 // Print spparms("spumoni") info if requested | |
1313 int typ = mattype.type (); | |
1314 mattype.info (); | |
1315 | |
1316 if (typ == SparseType::Permuted_Upper || | |
1317 typ == SparseType::Upper) | |
1318 { | |
1319 double anorm = 0.; | |
1320 double ainvnorm = 0.; | |
1321 rcond = 0.; | |
1322 | |
1323 // Calculate the 1-norm of matrix for rcond calculation | |
1324 for (int j = 0; j < nr; j++) | |
1325 { | |
1326 double atmp = 0.; | |
1327 for (int i = cidx(j); i < cidx(j+1); i++) | |
1328 atmp += fabs(data(i)); | |
1329 if (atmp > anorm) | |
1330 anorm = atmp; | |
1331 } | |
1332 | |
1333 int b_nr = b.rows (); | |
1334 int b_nc = b.cols (); | |
1335 int b_nz = b.nnz (); | |
1336 retval = SparseMatrix (b_nr, b_nc, b_nz); | |
1337 retval.xcidx(0) = 0; | |
1338 int ii = 0; | |
1339 int x_nz = b_nz; | |
1340 | |
1341 if (typ == SparseType::Permuted_Upper) | |
1342 { | |
1343 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
1344 int *p_perm = mattype.triangular_row_perm (); | |
1345 int *q_perm = mattype.triangular_col_perm (); | |
1346 | |
1347 (*current_liboctave_warning_handler) | |
1348 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
1349 | |
1350 for (int j = 0; j < b_nc; j++) | |
1351 { | |
1352 for (int i = 0; i < nr; i++) | |
1353 work[i] = 0.; | |
1354 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
1355 work[b.ridx(i)] = b.data(i); | |
1356 | |
1357 for (int k = nr-1; k >= 0; k--) | |
1358 { | |
1359 int iidx = q_perm[k]; | |
1360 if (work[iidx] != 0.) | |
1361 { | |
1362 if (ridx(cidx(iidx+1)-1) != iidx) | |
1363 { | |
1364 err = -2; | |
1365 goto triangular_error; | |
1366 } | |
1367 | |
1368 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
1369 work[iidx] = tmp; | |
1370 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1371 { | |
1372 int idx2 = q_perm[ridx(i)]; | |
1373 work[idx2] = | |
1374 work[idx2] - tmp * data(i); | |
1375 } | |
1376 } | |
1377 } | |
1378 | |
1379 // Count non-zeros in work vector and adjust space in | |
1380 // retval if needed | |
1381 int new_nnz = 0; | |
1382 for (int i = 0; i < nr; i++) | |
1383 if (work[i] != 0.) | |
1384 new_nnz++; | |
1385 | |
1386 if (ii + new_nnz > x_nz) | |
1387 { | |
1388 // Resize the sparse matrix | |
1389 int sz = new_nnz * (b_nc - j) + x_nz; | |
1390 retval.change_capacity (sz); | |
1391 x_nz = sz; | |
1392 } | |
1393 | |
1394 for (int i = 0; i < nr; i++) | |
1395 if (work[p_perm[i]] != 0.) | |
1396 { | |
1397 retval.xridx(ii) = i; | |
1398 retval.xdata(ii++) = work[p_perm[i]]; | |
1399 } | |
1400 retval.xcidx(j+1) = ii; | |
1401 } | |
1402 | |
1403 retval.maybe_compress (); | |
1404 | |
1405 // Calculation of 1-norm of inv(*this) | |
1406 for (int i = 0; i < nr; i++) | |
1407 work[i] = 0.; | |
1408 | |
1409 for (int j = 0; j < nr; j++) | |
1410 { | |
1411 work[q_perm[j]] = 1.; | |
1412 | |
1413 for (int k = j; k >= 0; k--) | |
1414 { | |
1415 int iidx = q_perm[k]; | |
1416 | |
1417 if (work[iidx] != 0.) | |
1418 { | |
1419 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
1420 work[iidx] = tmp; | |
1421 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1422 { | |
1423 int idx2 = q_perm[ridx(i)]; | |
1424 work[idx2] = work[idx2] - tmp * data(i); | |
1425 } | |
1426 } | |
1427 } | |
1428 double atmp = 0; | |
1429 for (int i = 0; i < j+1; i++) | |
1430 { | |
1431 atmp += fabs(work[i]); | |
1432 work[i] = 0.; | |
1433 } | |
1434 if (atmp > ainvnorm) | |
1435 ainvnorm = atmp; | |
1436 } | |
1437 } | |
1438 else | |
1439 { | |
1440 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
1441 | |
1442 for (int j = 0; j < b_nc; j++) | |
1443 { | |
1444 for (int i = 0; i < nr; i++) | |
1445 work[i] = 0.; | |
1446 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
1447 work[b.ridx(i)] = b.data(i); | |
1448 | |
1449 for (int k = nr-1; k >= 0; k--) | |
1450 { | |
1451 if (work[k] != 0.) | |
1452 { | |
1453 if (ridx(cidx(k+1)-1) != k) | |
1454 { | |
1455 err = -2; | |
1456 goto triangular_error; | |
1457 } | |
1458 | |
1459 double tmp = work[k] / data(cidx(k+1)-1); | |
1460 work[k] = tmp; | |
1461 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1462 { | |
1463 int iidx = ridx(i); | |
1464 work[iidx] = work[iidx] - tmp * data(i); | |
1465 } | |
1466 } | |
1467 } | |
1468 | |
1469 // Count non-zeros in work vector and adjust space in | |
1470 // retval if needed | |
1471 int new_nnz = 0; | |
1472 for (int i = 0; i < nr; i++) | |
1473 if (work[i] != 0.) | |
1474 new_nnz++; | |
1475 | |
1476 if (ii + new_nnz > x_nz) | |
1477 { | |
1478 // Resize the sparse matrix | |
1479 int sz = new_nnz * (b_nc - j) + x_nz; | |
1480 retval.change_capacity (sz); | |
1481 x_nz = sz; | |
1482 } | |
1483 | |
1484 for (int i = 0; i < nr; i++) | |
1485 if (work[i] != 0.) | |
1486 { | |
1487 retval.xridx(ii) = i; | |
1488 retval.xdata(ii++) = work[i]; | |
1489 } | |
1490 retval.xcidx(j+1) = ii; | |
1491 } | |
1492 | |
1493 retval.maybe_compress (); | |
1494 | |
1495 // Calculation of 1-norm of inv(*this) | |
1496 for (int i = 0; i < nr; i++) | |
1497 work[i] = 0.; | |
1498 | |
1499 for (int j = 0; j < nr; j++) | |
1500 { | |
1501 work[j] = 1.; | |
1502 | |
1503 for (int k = j; k >= 0; k--) | |
1504 { | |
1505 if (work[k] != 0.) | |
1506 { | |
1507 double tmp = work[k] / data(cidx(k+1)-1); | |
1508 work[k] = tmp; | |
1509 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1510 { | |
1511 int iidx = ridx(i); | |
1512 work[iidx] = work[iidx] - tmp * data(i); | |
1513 } | |
1514 } | |
1515 } | |
1516 double atmp = 0; | |
1517 for (int i = 0; i < j+1; i++) | |
1518 { | |
1519 atmp += fabs(work[i]); | |
1520 work[i] = 0.; | |
1521 } | |
1522 if (atmp > ainvnorm) | |
1523 ainvnorm = atmp; | |
1524 } | |
1525 } | |
1526 | |
1527 rcond = 1. / ainvnorm / anorm; | |
1528 | |
1529 triangular_error: | |
1530 if (err != 0) | |
1531 { | |
1532 if (sing_handler) | |
1533 sing_handler (rcond); | |
1534 else | |
1535 (*current_liboctave_error_handler) | |
1536 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
1537 rcond); | |
1538 } | |
1539 | |
1540 volatile double rcond_plus_one = rcond + 1.0; | |
1541 | |
1542 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
1543 { | |
1544 err = -2; | |
1545 | |
1546 if (sing_handler) | |
1547 sing_handler (rcond); | |
1548 else | |
1549 (*current_liboctave_error_handler) | |
1550 ("matrix singular to machine precision, rcond = %g", | |
1551 rcond); | |
1552 } | |
1553 } | |
1554 else | |
1555 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
1556 } | |
1557 return retval; | |
1558 } | |
1559 | |
1560 ComplexMatrix | |
1561 SparseMatrix::utsolve (SparseType &mattype, const ComplexMatrix& b, int& err, | |
1562 double& rcond, solve_singularity_handler sing_handler) const | |
1563 { | |
1564 ComplexMatrix retval; | |
1565 | |
1566 int nr = rows (); | |
1567 int nc = cols (); | |
1568 err = 0; | |
1569 | |
1570 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
1571 (*current_liboctave_error_handler) | |
1572 ("matrix dimension mismatch solution of linear equations"); | |
1573 else | |
1574 { | |
1575 // Print spparms("spumoni") info if requested | |
1576 int typ = mattype.type (); | |
1577 mattype.info (); | |
1578 | |
1579 if (typ == SparseType::Permuted_Upper || | |
1580 typ == SparseType::Upper) | |
1581 { | |
1582 double anorm = 0.; | |
1583 double ainvnorm = 0.; | |
1584 int b_nc = b.cols (); | |
1585 rcond = 0.; | |
1586 | |
1587 // Calculate the 1-norm of matrix for rcond calculation | |
1588 for (int j = 0; j < nr; j++) | |
1589 { | |
1590 double atmp = 0.; | |
1591 for (int i = cidx(j); i < cidx(j+1); i++) | |
1592 atmp += fabs(data(i)); | |
1593 if (atmp > anorm) | |
1594 anorm = atmp; | |
1595 } | |
1596 | |
1597 if (typ == SparseType::Permuted_Upper) | |
1598 { | |
1599 retval.resize (b.rows (), b.cols ()); | |
1600 OCTAVE_LOCAL_BUFFER (Complex, work, nr); | |
1601 int *p_perm = mattype.triangular_row_perm (); | |
1602 int *q_perm = mattype.triangular_col_perm (); | |
1603 | |
1604 (*current_liboctave_warning_handler) | |
1605 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
1606 | |
1607 for (int j = 0; j < b_nc; j++) | |
1608 { | |
1609 for (int i = 0; i < nr; i++) | |
1610 work[i] = b(i,j); | |
1611 | |
1612 for (int k = nr-1; k >= 0; k--) | |
1613 { | |
1614 int iidx = q_perm[k]; | |
1615 if (work[iidx] != 0.) | |
1616 { | |
1617 if (ridx(cidx(iidx+1)-1) != iidx) | |
1618 { | |
1619 err = -2; | |
1620 goto triangular_error; | |
1621 } | |
1622 | |
1623 Complex tmp = work[iidx] / data(cidx(iidx+1)-1); | |
1624 work[iidx] = tmp; | |
1625 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1626 { | |
1627 int idx2 = q_perm[ridx(i)]; | |
1628 work[idx2] = | |
1629 work[idx2] - tmp * data(i); | |
1630 } | |
1631 } | |
1632 } | |
1633 | |
1634 for (int i = 0; i < nr; i++) | |
1635 retval (i, j) = work[p_perm[i]]; | |
1636 | |
1637 } | |
1638 | |
1639 // Calculation of 1-norm of inv(*this) | |
1640 OCTAVE_LOCAL_BUFFER (double, work2, nr); | |
1641 for (int i = 0; i < nr; i++) | |
1642 work2[i] = 0.; | |
1643 | |
1644 for (int j = 0; j < nr; j++) | |
1645 { | |
1646 work2[q_perm[j]] = 1.; | |
1647 | |
1648 for (int k = j; k >= 0; k--) | |
1649 { | |
1650 int iidx = q_perm[k]; | |
1651 | |
1652 if (work2[iidx] != 0.) | |
1653 { | |
1654 double tmp = work2[iidx] / data(cidx(iidx+1)-1); | |
1655 work2[iidx] = tmp; | |
1656 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1657 { | |
1658 int idx2 = q_perm[ridx(i)]; | |
1659 work2[idx2] = work2[idx2] - tmp * data(i); | |
1660 } | |
1661 } | |
1662 } | |
1663 double atmp = 0; | |
1664 for (int i = 0; i < j+1; i++) | |
1665 { | |
1666 atmp += fabs(work2[i]); | |
1667 work2[i] = 0.; | |
1668 } | |
1669 if (atmp > ainvnorm) | |
1670 ainvnorm = atmp; | |
1671 } | |
1672 } | |
1673 else | |
1674 { | |
1675 retval = b; | |
1676 Complex *x_vec = retval.fortran_vec (); | |
1677 | |
1678 for (int j = 0; j < b_nc; j++) | |
1679 { | |
1680 int offset = j * nr; | |
1681 for (int k = nr-1; k >= 0; k--) | |
1682 { | |
1683 if (x_vec[k+offset] != 0.) | |
1684 { | |
1685 if (ridx(cidx(k+1)-1) != k) | |
1686 { | |
1687 err = -2; | |
1688 goto triangular_error; | |
1689 } | |
1690 | |
1691 Complex tmp = x_vec[k+offset] / | |
1692 data(cidx(k+1)-1); | |
1693 x_vec[k+offset] = tmp; | |
1694 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1695 { | |
1696 int iidx = ridx(i); | |
1697 x_vec[iidx+offset] = | |
1698 x_vec[iidx+offset] - tmp * data(i); | |
1699 } | |
1700 } | |
1701 } | |
1702 } | |
1703 | |
1704 // Calculation of 1-norm of inv(*this) | |
1705 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
1706 for (int i = 0; i < nr; i++) | |
1707 work[i] = 0.; | |
1708 | |
1709 for (int j = 0; j < nr; j++) | |
1710 { | |
1711 work[j] = 1.; | |
1712 | |
1713 for (int k = j; k >= 0; k--) | |
1714 { | |
1715 if (work[k] != 0.) | |
1716 { | |
1717 double tmp = work[k] / data(cidx(k+1)-1); | |
1718 work[k] = tmp; | |
1719 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1720 { | |
1721 int iidx = ridx(i); | |
1722 work[iidx] = work[iidx] - tmp * data(i); | |
1723 } | |
1724 } | |
1725 } | |
1726 double atmp = 0; | |
1727 for (int i = 0; i < j+1; i++) | |
1728 { | |
1729 atmp += fabs(work[i]); | |
1730 work[i] = 0.; | |
1731 } | |
1732 if (atmp > ainvnorm) | |
1733 ainvnorm = atmp; | |
1734 } | |
1735 } | |
1736 | |
1737 rcond = 1. / ainvnorm / anorm; | |
1738 | |
1739 triangular_error: | |
1740 if (err != 0) | |
1741 { | |
1742 if (sing_handler) | |
1743 sing_handler (rcond); | |
1744 else | |
1745 (*current_liboctave_error_handler) | |
1746 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
1747 rcond); | |
1748 } | |
1749 | |
1750 volatile double rcond_plus_one = rcond + 1.0; | |
1751 | |
1752 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
1753 { | |
1754 err = -2; | |
1755 | |
1756 if (sing_handler) | |
1757 sing_handler (rcond); | |
1758 else | |
1759 (*current_liboctave_error_handler) | |
1760 ("matrix singular to machine precision, rcond = %g", | |
1761 rcond); | |
1762 } | |
1763 } | |
1764 else | |
1765 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
1766 } | |
1767 | |
1768 return retval; | |
1769 } | |
1770 | |
1771 SparseComplexMatrix | |
1772 SparseMatrix::utsolve (SparseType &mattype, const SparseComplexMatrix& b, | |
1773 int& err, double& rcond, | |
1774 solve_singularity_handler sing_handler) const | |
1775 { | |
1776 SparseComplexMatrix retval; | |
1777 | |
1778 int nr = rows (); | |
1779 int nc = cols (); | |
1780 err = 0; | |
1781 | |
1782 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
1783 (*current_liboctave_error_handler) | |
1784 ("matrix dimension mismatch solution of linear equations"); | |
1785 else | |
1786 { | |
1787 // Print spparms("spumoni") info if requested | |
1788 int typ = mattype.type (); | |
1789 mattype.info (); | |
1790 | |
1791 if (typ == SparseType::Permuted_Upper || | |
1792 typ == SparseType::Upper) | |
1793 { | |
1794 double anorm = 0.; | |
1795 double ainvnorm = 0.; | |
1796 rcond = 0.; | |
1797 | |
1798 // Calculate the 1-norm of matrix for rcond calculation | |
1799 for (int j = 0; j < nr; j++) | |
1800 { | |
1801 double atmp = 0.; | |
1802 for (int i = cidx(j); i < cidx(j+1); i++) | |
1803 atmp += fabs(data(i)); | |
1804 if (atmp > anorm) | |
1805 anorm = atmp; | |
1806 } | |
1807 | |
1808 int b_nr = b.rows (); | |
1809 int b_nc = b.cols (); | |
1810 int b_nz = b.nnz (); | |
1811 retval = SparseComplexMatrix (b_nr, b_nc, b_nz); | |
1812 retval.xcidx(0) = 0; | |
1813 int ii = 0; | |
1814 int x_nz = b_nz; | |
1815 | |
1816 if (typ == SparseType::Permuted_Upper) | |
1817 { | |
1818 OCTAVE_LOCAL_BUFFER (Complex, work, nr); | |
1819 int *p_perm = mattype.triangular_row_perm (); | |
1820 int *q_perm = mattype.triangular_col_perm (); | |
1821 | |
1822 (*current_liboctave_warning_handler) | |
1823 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
1824 | |
1825 for (int j = 0; j < b_nc; j++) | |
1826 { | |
1827 for (int i = 0; i < nr; i++) | |
1828 work[i] = 0.; | |
1829 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
1830 work[b.ridx(i)] = b.data(i); | |
1831 | |
1832 for (int k = nr-1; k >= 0; k--) | |
1833 { | |
1834 int iidx = q_perm[k]; | |
1835 if (work[iidx] != 0.) | |
1836 { | |
1837 if (ridx(cidx(iidx+1)-1) != iidx) | |
1838 { | |
1839 err = -2; | |
1840 goto triangular_error; | |
1841 } | |
1842 | |
1843 Complex tmp = work[iidx] / data(cidx(iidx+1)-1); | |
1844 work[iidx] = tmp; | |
1845 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1846 { | |
1847 int idx2 = q_perm[ridx(i)]; | |
1848 work[idx2] = | |
1849 work[idx2] - tmp * data(i); | |
1850 } | |
1851 } | |
1852 } | |
1853 | |
1854 // Count non-zeros in work vector and adjust space in | |
1855 // retval if needed | |
1856 int new_nnz = 0; | |
1857 for (int i = 0; i < nr; i++) | |
1858 if (work[i] != 0.) | |
1859 new_nnz++; | |
1860 | |
1861 if (ii + new_nnz > x_nz) | |
1862 { | |
1863 // Resize the sparse matrix | |
1864 int sz = new_nnz * (b_nc - j) + x_nz; | |
1865 retval.change_capacity (sz); | |
1866 x_nz = sz; | |
1867 } | |
1868 | |
1869 for (int i = 0; i < nr; i++) | |
1870 if (work[p_perm[i]] != 0.) | |
1871 { | |
1872 retval.xridx(ii) = i; | |
1873 retval.xdata(ii++) = work[p_perm[i]]; | |
1874 } | |
1875 retval.xcidx(j+1) = ii; | |
1876 } | |
1877 | |
1878 retval.maybe_compress (); | |
1879 | |
1880 OCTAVE_LOCAL_BUFFER (double, work2, nr); | |
1881 // Calculation of 1-norm of inv(*this) | |
1882 for (int i = 0; i < nr; i++) | |
1883 work2[i] = 0.; | |
1884 | |
1885 for (int j = 0; j < nr; j++) | |
1886 { | |
1887 work2[q_perm[j]] = 1.; | |
1888 | |
1889 for (int k = j; k >= 0; k--) | |
1890 { | |
1891 int iidx = q_perm[k]; | |
1892 | |
1893 if (work2[iidx] != 0.) | |
1894 { | |
1895 double tmp = work2[iidx] / data(cidx(iidx+1)-1); | |
1896 work2[iidx] = tmp; | |
1897 for (int i = cidx(iidx); i < cidx(iidx+1)-1; i++) | |
1898 { | |
1899 int idx2 = q_perm[ridx(i)]; | |
1900 work2[idx2] = work2[idx2] - tmp * data(i); | |
1901 } | |
1902 } | |
1903 } | |
1904 double atmp = 0; | |
1905 for (int i = 0; i < j+1; i++) | |
1906 { | |
1907 atmp += fabs(work2[i]); | |
1908 work2[i] = 0.; | |
1909 } | |
1910 if (atmp > ainvnorm) | |
1911 ainvnorm = atmp; | |
1912 } | |
1913 } | |
1914 else | |
1915 { | |
1916 OCTAVE_LOCAL_BUFFER (Complex, work, nr); | |
1917 | |
1918 for (int j = 0; j < b_nc; j++) | |
1919 { | |
1920 for (int i = 0; i < nr; i++) | |
1921 work[i] = 0.; | |
1922 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
1923 work[b.ridx(i)] = b.data(i); | |
1924 | |
1925 for (int k = nr-1; k >= 0; k--) | |
1926 { | |
1927 if (work[k] != 0.) | |
1928 { | |
1929 if (ridx(cidx(k+1)-1) != k) | |
1930 { | |
1931 err = -2; | |
1932 goto triangular_error; | |
1933 } | |
1934 | |
1935 Complex tmp = work[k] / data(cidx(k+1)-1); | |
1936 work[k] = tmp; | |
1937 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1938 { | |
1939 int iidx = ridx(i); | |
1940 work[iidx] = work[iidx] - tmp * data(i); | |
1941 } | |
1942 } | |
1943 } | |
1944 | |
1945 // Count non-zeros in work vector and adjust space in | |
1946 // retval if needed | |
1947 int new_nnz = 0; | |
1948 for (int i = 0; i < nr; i++) | |
1949 if (work[i] != 0.) | |
1950 new_nnz++; | |
1951 | |
1952 if (ii + new_nnz > x_nz) | |
1953 { | |
1954 // Resize the sparse matrix | |
1955 int sz = new_nnz * (b_nc - j) + x_nz; | |
1956 retval.change_capacity (sz); | |
1957 x_nz = sz; | |
1958 } | |
1959 | |
1960 for (int i = 0; i < nr; i++) | |
1961 if (work[i] != 0.) | |
1962 { | |
1963 retval.xridx(ii) = i; | |
1964 retval.xdata(ii++) = work[i]; | |
1965 } | |
1966 retval.xcidx(j+1) = ii; | |
1967 } | |
1968 | |
1969 retval.maybe_compress (); | |
1970 | |
1971 // Calculation of 1-norm of inv(*this) | |
1972 OCTAVE_LOCAL_BUFFER (double, work2, nr); | |
1973 for (int i = 0; i < nr; i++) | |
1974 work2[i] = 0.; | |
1975 | |
1976 for (int j = 0; j < nr; j++) | |
1977 { | |
1978 work2[j] = 1.; | |
1979 | |
1980 for (int k = j; k >= 0; k--) | |
1981 { | |
1982 if (work2[k] != 0.) | |
1983 { | |
1984 double tmp = work2[k] / data(cidx(k+1)-1); | |
1985 work2[k] = tmp; | |
1986 for (int i = cidx(k); i < cidx(k+1)-1; i++) | |
1987 { | |
1988 int iidx = ridx(i); | |
1989 work2[iidx] = work2[iidx] - tmp * data(i); | |
1990 } | |
1991 } | |
1992 } | |
1993 double atmp = 0; | |
1994 for (int i = 0; i < j+1; i++) | |
1995 { | |
1996 atmp += fabs(work2[i]); | |
1997 work2[i] = 0.; | |
1998 } | |
1999 if (atmp > ainvnorm) | |
2000 ainvnorm = atmp; | |
2001 } | |
2002 } | |
2003 | |
2004 rcond = 1. / ainvnorm / anorm; | |
2005 | |
2006 triangular_error: | |
2007 if (err != 0) | |
2008 { | |
2009 if (sing_handler) | |
2010 sing_handler (rcond); | |
2011 else | |
2012 (*current_liboctave_error_handler) | |
2013 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
2014 rcond); | |
2015 } | |
2016 | |
2017 volatile double rcond_plus_one = rcond + 1.0; | |
2018 | |
2019 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
2020 { | |
2021 err = -2; | |
2022 | |
2023 if (sing_handler) | |
2024 sing_handler (rcond); | |
2025 else | |
2026 (*current_liboctave_error_handler) | |
2027 ("matrix singular to machine precision, rcond = %g", | |
2028 rcond); | |
2029 } | |
2030 } | |
2031 else | |
2032 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
2033 } | |
2034 | |
2035 return retval; | |
2036 } | |
2037 | |
2038 Matrix | |
2039 SparseMatrix::ltsolve (SparseType &mattype, const Matrix& b, int& err, | |
2040 double& rcond, | |
2041 solve_singularity_handler sing_handler) const | |
2042 { | |
2043 Matrix retval; | |
2044 | |
2045 int nr = rows (); | |
2046 int nc = cols (); | |
2047 err = 0; | |
2048 | |
2049 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
2050 (*current_liboctave_error_handler) | |
2051 ("matrix dimension mismatch solution of linear equations"); | |
2052 else | |
2053 { | |
2054 // Print spparms("spumoni") info if requested | |
2055 int typ = mattype.type (); | |
2056 mattype.info (); | |
2057 | |
2058 if (typ == SparseType::Permuted_Lower || | |
2059 typ == SparseType::Lower) | |
2060 { | |
2061 double anorm = 0.; | |
2062 double ainvnorm = 0.; | |
2063 int b_cols = b.cols (); | |
2064 rcond = 0.; | |
2065 | |
2066 // Calculate the 1-norm of matrix for rcond calculation | |
2067 for (int j = 0; j < nr; j++) | |
2068 { | |
2069 double atmp = 0.; | |
2070 for (int i = cidx(j); i < cidx(j+1); i++) | |
2071 atmp += fabs(data(i)); | |
2072 if (atmp > anorm) | |
2073 anorm = atmp; | |
2074 } | |
2075 | |
2076 if (typ == SparseType::Permuted_Lower) | |
2077 { | |
2078 retval.resize (b.rows (), b.cols ()); | |
2079 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
2080 int *p_perm = mattype.triangular_row_perm (); | |
2081 int *q_perm = mattype.triangular_col_perm (); | |
2082 | |
2083 (*current_liboctave_warning_handler) | |
2084 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
2085 | |
2086 for (int j = 0; j < b_cols; j++) | |
2087 { | |
2088 for (int i = 0; i < nr; i++) | |
2089 work[i] = b(i,j); | |
2090 | |
2091 for (int k = 0; k < nr; k++) | |
2092 { | |
2093 int iidx = q_perm[k]; | |
2094 if (work[iidx] != 0.) | |
2095 { | |
2096 if (ridx(cidx(iidx)) != iidx) | |
2097 { | |
2098 err = -2; | |
2099 goto triangular_error; | |
2100 } | |
2101 | |
2102 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
2103 work[iidx] = tmp; | |
2104 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2105 { | |
2106 int idx2 = q_perm[ridx(i)]; | |
2107 work[idx2] = | |
2108 work[idx2] - tmp * data(i); | |
2109 } | |
2110 } | |
2111 } | |
2112 | |
2113 for (int i = 0; i < nr; i++) | |
2114 retval (i, j) = work[p_perm[i]]; | |
2115 | |
2116 } | |
2117 | |
2118 // Calculation of 1-norm of inv(*this) | |
2119 for (int i = 0; i < nr; i++) | |
2120 work[i] = 0.; | |
2121 | |
2122 for (int j = 0; j < nr; j++) | |
2123 { | |
2124 work[q_perm[j]] = 1.; | |
2125 | |
2126 for (int k = 0; k < nr; k++) | |
2127 { | |
2128 int iidx = q_perm[k]; | |
2129 | |
2130 if (work[iidx] != 0.) | |
2131 { | |
2132 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
2133 work[iidx] = tmp; | |
2134 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2135 { | |
2136 int idx2 = q_perm[ridx(i)]; | |
2137 work[idx2] = work[idx2] - tmp * data(i); | |
2138 } | |
2139 } | |
2140 } | |
2141 double atmp = 0; | |
2142 for (int i = 0; i < j+1; i++) | |
2143 { | |
2144 atmp += fabs(work[i]); | |
2145 work[i] = 0.; | |
2146 } | |
2147 if (atmp > ainvnorm) | |
2148 ainvnorm = atmp; | |
2149 } | |
2150 } | |
2151 else | |
2152 { | |
2153 retval = b; | |
2154 double *x_vec = retval.fortran_vec (); | |
2155 | |
2156 for (int j = 0; j < b_cols; j++) | |
2157 { | |
2158 int offset = j * nr; | |
2159 for (int k = 0; k < nr; k++) | |
2160 { | |
2161 if (x_vec[k+offset] != 0.) | |
2162 { | |
2163 if (ridx(cidx(k)) != k) | |
2164 { | |
2165 err = -2; | |
2166 goto triangular_error; | |
2167 } | |
2168 | |
2169 double tmp = x_vec[k+offset] / | |
2170 data(cidx(k)); | |
2171 x_vec[k+offset] = tmp; | |
2172 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2173 { | |
2174 int iidx = ridx(i); | |
2175 x_vec[iidx+offset] = | |
2176 x_vec[iidx+offset] - tmp * data(i); | |
2177 } | |
2178 } | |
2179 } | |
2180 } | |
2181 | |
2182 // Calculation of 1-norm of inv(*this) | |
2183 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
2184 for (int i = 0; i < nr; i++) | |
2185 work[i] = 0.; | |
2186 | |
2187 for (int j = 0; j < nr; j++) | |
2188 { | |
2189 work[j] = 1.; | |
2190 | |
2191 for (int k = j; k < nr; k++) | |
2192 { | |
2193 | |
2194 if (work[k] != 0.) | |
2195 { | |
2196 double tmp = work[k] / data(cidx(k)); | |
2197 work[k] = tmp; | |
2198 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2199 { | |
2200 int iidx = ridx(i); | |
2201 work[iidx] = work[iidx] - tmp * data(i); | |
2202 } | |
2203 } | |
2204 } | |
2205 double atmp = 0; | |
2206 for (int i = j; i < nr; i++) | |
2207 { | |
2208 atmp += fabs(work[i]); | |
2209 work[i] = 0.; | |
2210 } | |
2211 if (atmp > ainvnorm) | |
2212 ainvnorm = atmp; | |
2213 } | |
2214 | |
2215 } | |
2216 | |
2217 rcond = 1. / ainvnorm / anorm; | |
2218 | |
2219 triangular_error: | |
2220 if (err != 0) | |
2221 { | |
2222 if (sing_handler) | |
2223 sing_handler (rcond); | |
2224 else | |
2225 (*current_liboctave_error_handler) | |
2226 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
2227 rcond); | |
2228 } | |
2229 | |
2230 volatile double rcond_plus_one = rcond + 1.0; | |
2231 | |
2232 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
2233 { | |
2234 err = -2; | |
2235 | |
2236 if (sing_handler) | |
2237 sing_handler (rcond); | |
2238 else | |
2239 (*current_liboctave_error_handler) | |
2240 ("matrix singular to machine precision, rcond = %g", | |
2241 rcond); | |
2242 } | |
2243 } | |
2244 else | |
2245 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
2246 } | |
2247 | |
2248 return retval; | |
2249 } | |
2250 | |
2251 SparseMatrix | |
2252 SparseMatrix::ltsolve (SparseType &mattype, const SparseMatrix& b, int& err, | |
2253 double& rcond, solve_singularity_handler sing_handler) const | |
2254 { | |
2255 SparseMatrix retval; | |
2256 | |
2257 int nr = rows (); | |
2258 int nc = cols (); | |
2259 err = 0; | |
2260 | |
2261 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
2262 (*current_liboctave_error_handler) | |
2263 ("matrix dimension mismatch solution of linear equations"); | |
2264 else | |
2265 { | |
2266 // Print spparms("spumoni") info if requested | |
2267 int typ = mattype.type (); | |
2268 mattype.info (); | |
2269 | |
2270 if (typ == SparseType::Permuted_Lower || | |
2271 typ == SparseType::Lower) | |
2272 { | |
2273 double anorm = 0.; | |
2274 double ainvnorm = 0.; | |
2275 rcond = 0.; | |
2276 | |
2277 // Calculate the 1-norm of matrix for rcond calculation | |
2278 for (int j = 0; j < nr; j++) | |
2279 { | |
2280 double atmp = 0.; | |
2281 for (int i = cidx(j); i < cidx(j+1); i++) | |
2282 atmp += fabs(data(i)); | |
2283 if (atmp > anorm) | |
2284 anorm = atmp; | |
2285 } | |
2286 | |
2287 int b_nr = b.rows (); | |
2288 int b_nc = b.cols (); | |
2289 int b_nz = b.nnz (); | |
2290 retval = SparseMatrix (b_nr, b_nc, b_nz); | |
2291 retval.xcidx(0) = 0; | |
2292 int ii = 0; | |
2293 int x_nz = b_nz; | |
2294 | |
2295 if (typ == SparseType::Permuted_Lower) | |
2296 { | |
2297 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
2298 int *p_perm = mattype.triangular_row_perm (); | |
2299 int *q_perm = mattype.triangular_col_perm (); | |
2300 | |
2301 (*current_liboctave_warning_handler) | |
2302 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
2303 | |
2304 for (int j = 0; j < b_nc; j++) | |
2305 { | |
2306 for (int i = 0; i < nr; i++) | |
2307 work[i] = 0.; | |
2308 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
2309 work[b.ridx(i)] = b.data(i); | |
2310 | |
2311 for (int k = 0; k < nr; k++) | |
2312 { | |
2313 int iidx = q_perm[k]; | |
2314 if (work[iidx] != 0.) | |
2315 { | |
2316 if (ridx(cidx(iidx)) != iidx) | |
2317 { | |
2318 err = -2; | |
2319 goto triangular_error; | |
2320 } | |
2321 | |
2322 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
2323 work[iidx] = tmp; | |
2324 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2325 { | |
2326 int idx2 = q_perm[ridx(i)]; | |
2327 work[idx2] = | |
2328 work[idx2] - tmp * data(i); | |
2329 } | |
2330 } | |
2331 } | |
2332 | |
2333 // Count non-zeros in work vector and adjust space in | |
2334 // retval if needed | |
2335 int new_nnz = 0; | |
2336 for (int i = 0; i < nr; i++) | |
2337 if (work[i] != 0.) | |
2338 new_nnz++; | |
2339 | |
2340 if (ii + new_nnz > x_nz) | |
2341 { | |
2342 // Resize the sparse matrix | |
2343 int sz = new_nnz * (b_nc - j) + x_nz; | |
2344 retval.change_capacity (sz); | |
2345 x_nz = sz; | |
2346 } | |
2347 | |
2348 for (int i = 0; i < nr; i++) | |
2349 if (work[p_perm[i]] != 0.) | |
2350 { | |
2351 retval.xridx(ii) = i; | |
2352 retval.xdata(ii++) = work[p_perm[i]]; | |
2353 } | |
2354 retval.xcidx(j+1) = ii; | |
2355 } | |
2356 | |
2357 retval.maybe_compress (); | |
2358 | |
2359 // Calculation of 1-norm of inv(*this) | |
2360 for (int i = 0; i < nr; i++) | |
2361 work[i] = 0.; | |
2362 | |
2363 for (int j = 0; j < nr; j++) | |
2364 { | |
2365 work[q_perm[j]] = 1.; | |
2366 | |
2367 for (int k = 0; k < nr; k++) | |
2368 { | |
2369 int iidx = q_perm[k]; | |
2370 | |
2371 if (work[iidx] != 0.) | |
2372 { | |
2373 double tmp = work[iidx] / data(cidx(iidx+1)-1); | |
2374 work[iidx] = tmp; | |
2375 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2376 { | |
2377 int idx2 = q_perm[ridx(i)]; | |
2378 work[idx2] = work[idx2] - tmp * data(i); | |
2379 } | |
2380 } | |
2381 } | |
2382 double atmp = 0; | |
2383 for (int i = 0; i < j+1; i++) | |
2384 { | |
2385 atmp += fabs(work[i]); | |
2386 work[i] = 0.; | |
2387 } | |
2388 if (atmp > ainvnorm) | |
2389 ainvnorm = atmp; | |
2390 } | |
2391 } | |
2392 else | |
2393 { | |
2394 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
2395 | |
2396 for (int j = 0; j < b_nc; j++) | |
2397 { | |
2398 for (int i = 0; i < nr; i++) | |
2399 work[i] = 0.; | |
2400 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
2401 work[b.ridx(i)] = b.data(i); | |
2402 | |
2403 for (int k = 0; k < nr; k++) | |
2404 { | |
2405 if (work[k] != 0.) | |
2406 { | |
2407 if (ridx(cidx(k)) != k) | |
2408 { | |
2409 err = -2; | |
2410 goto triangular_error; | |
2411 } | |
2412 | |
2413 double tmp = work[k] / data(cidx(k)); | |
2414 work[k] = tmp; | |
2415 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2416 { | |
2417 int iidx = ridx(i); | |
2418 work[iidx] = work[iidx] - tmp * data(i); | |
2419 } | |
2420 } | |
2421 } | |
2422 | |
2423 // Count non-zeros in work vector and adjust space in | |
2424 // retval if needed | |
2425 int new_nnz = 0; | |
2426 for (int i = 0; i < nr; i++) | |
2427 if (work[i] != 0.) | |
2428 new_nnz++; | |
2429 | |
2430 if (ii + new_nnz > x_nz) | |
2431 { | |
2432 // Resize the sparse matrix | |
2433 int sz = new_nnz * (b_nc - j) + x_nz; | |
2434 retval.change_capacity (sz); | |
2435 x_nz = sz; | |
2436 } | |
2437 | |
2438 for (int i = 0; i < nr; i++) | |
2439 if (work[i] != 0.) | |
2440 { | |
2441 retval.xridx(ii) = i; | |
2442 retval.xdata(ii++) = work[i]; | |
2443 } | |
2444 retval.xcidx(j+1) = ii; | |
2445 } | |
2446 | |
2447 retval.maybe_compress (); | |
2448 | |
2449 // Calculation of 1-norm of inv(*this) | |
2450 for (int i = 0; i < nr; i++) | |
2451 work[i] = 0.; | |
2452 | |
2453 for (int j = 0; j < nr; j++) | |
2454 { | |
2455 work[j] = 1.; | |
2456 | |
2457 for (int k = j; k < nr; k++) | |
2458 { | |
2459 | |
2460 if (work[k] != 0.) | |
2461 { | |
2462 double tmp = work[k] / data(cidx(k)); | |
2463 work[k] = tmp; | |
2464 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2465 { | |
2466 int iidx = ridx(i); | |
2467 work[iidx] = work[iidx] - tmp * data(i); | |
2468 } | |
2469 } | |
2470 } | |
2471 double atmp = 0; | |
2472 for (int i = j; i < nr; i++) | |
2473 { | |
2474 atmp += fabs(work[i]); | |
2475 work[i] = 0.; | |
2476 } | |
2477 if (atmp > ainvnorm) | |
2478 ainvnorm = atmp; | |
2479 } | |
2480 | |
2481 } | |
2482 | |
2483 rcond = 1. / ainvnorm / anorm; | |
2484 | |
2485 triangular_error: | |
2486 if (err != 0) | |
2487 { | |
2488 if (sing_handler) | |
2489 sing_handler (rcond); | |
2490 else | |
2491 (*current_liboctave_error_handler) | |
2492 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
2493 rcond); | |
2494 } | |
2495 | |
2496 volatile double rcond_plus_one = rcond + 1.0; | |
2497 | |
2498 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
2499 { | |
2500 err = -2; | |
2501 | |
2502 if (sing_handler) | |
2503 sing_handler (rcond); | |
2504 else | |
2505 (*current_liboctave_error_handler) | |
2506 ("matrix singular to machine precision, rcond = %g", | |
2507 rcond); | |
2508 } | |
2509 } | |
2510 else | |
2511 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
2512 } | |
2513 | |
2514 return retval; | |
2515 } | |
2516 | |
2517 ComplexMatrix | |
2518 SparseMatrix::ltsolve (SparseType &mattype, const ComplexMatrix& b, int& err, | |
2519 double& rcond, solve_singularity_handler sing_handler) const | |
2520 { | |
2521 ComplexMatrix retval; | |
2522 | |
2523 int nr = rows (); | |
2524 int nc = cols (); | |
2525 err = 0; | |
2526 | |
2527 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
2528 (*current_liboctave_error_handler) | |
2529 ("matrix dimension mismatch solution of linear equations"); | |
2530 else | |
2531 { | |
2532 // Print spparms("spumoni") info if requested | |
2533 int typ = mattype.type (); | |
2534 mattype.info (); | |
2535 | |
2536 if (typ == SparseType::Permuted_Lower || | |
2537 typ == SparseType::Lower) | |
2538 { | |
2539 double anorm = 0.; | |
2540 double ainvnorm = 0.; | |
2541 int b_nc = b.cols (); | |
2542 rcond = 0.; | |
2543 | |
2544 // Calculate the 1-norm of matrix for rcond calculation | |
2545 for (int j = 0; j < nr; j++) | |
2546 { | |
2547 double atmp = 0.; | |
2548 for (int i = cidx(j); i < cidx(j+1); i++) | |
2549 atmp += fabs(data(i)); | |
2550 if (atmp > anorm) | |
2551 anorm = atmp; | |
2552 } | |
2553 | |
2554 if (typ == SparseType::Permuted_Lower) | |
2555 { | |
2556 retval.resize (b.rows (), b.cols ()); | |
2557 OCTAVE_LOCAL_BUFFER (Complex, work, nr); | |
2558 int *p_perm = mattype.triangular_row_perm (); | |
2559 int *q_perm = mattype.triangular_col_perm (); | |
2560 | |
2561 (*current_liboctave_warning_handler) | |
2562 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
2563 | |
2564 for (int j = 0; j < b_nc; j++) | |
2565 { | |
2566 for (int i = 0; i < nr; i++) | |
2567 work[i] = b(i,j); | |
2568 | |
2569 for (int k = 0; k < nr; k++) | |
2570 { | |
2571 int iidx = q_perm[k]; | |
2572 if (work[iidx] != 0.) | |
2573 { | |
2574 if (ridx(cidx(iidx)) != iidx) | |
2575 { | |
2576 err = -2; | |
2577 goto triangular_error; | |
2578 } | |
2579 | |
2580 Complex tmp = work[iidx] / data(cidx(iidx+1)-1); | |
2581 work[iidx] = tmp; | |
2582 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2583 { | |
2584 int idx2 = q_perm[ridx(i)]; | |
2585 work[idx2] = | |
2586 work[idx2] - tmp * data(i); | |
2587 } | |
2588 } | |
2589 } | |
2590 | |
2591 for (int i = 0; i < nr; i++) | |
2592 retval (i, j) = work[p_perm[i]]; | |
2593 | |
2594 } | |
2595 | |
2596 // Calculation of 1-norm of inv(*this) | |
2597 OCTAVE_LOCAL_BUFFER (double, work2, nr); | |
2598 for (int i = 0; i < nr; i++) | |
2599 work2[i] = 0.; | |
2600 | |
2601 for (int j = 0; j < nr; j++) | |
2602 { | |
2603 work2[q_perm[j]] = 1.; | |
2604 | |
2605 for (int k = 0; k < nr; k++) | |
2606 { | |
2607 int iidx = q_perm[k]; | |
2608 | |
2609 if (work2[iidx] != 0.) | |
2610 { | |
2611 double tmp = work2[iidx] / data(cidx(iidx+1)-1); | |
2612 work2[iidx] = tmp; | |
2613 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2614 { | |
2615 int idx2 = q_perm[ridx(i)]; | |
2616 work2[idx2] = work2[idx2] - tmp * data(i); | |
2617 } | |
2618 } | |
2619 } | |
2620 double atmp = 0; | |
2621 for (int i = 0; i < j+1; i++) | |
2622 { | |
2623 atmp += fabs(work2[i]); | |
2624 work2[i] = 0.; | |
2625 } | |
2626 if (atmp > ainvnorm) | |
2627 ainvnorm = atmp; | |
2628 } | |
2629 } | |
2630 else | |
2631 { | |
2632 retval = b; | |
2633 Complex *x_vec = retval.fortran_vec (); | |
2634 | |
2635 for (int j = 0; j < b_nc; j++) | |
2636 { | |
2637 int offset = j * nr; | |
2638 for (int k = 0; k < nr; k++) | |
2639 { | |
2640 if (x_vec[k+offset] != 0.) | |
2641 { | |
2642 if (ridx(cidx(k)) != k) | |
2643 { | |
2644 err = -2; | |
2645 goto triangular_error; | |
2646 } | |
2647 | |
2648 Complex tmp = x_vec[k+offset] / | |
2649 data(cidx(k)); | |
2650 x_vec[k+offset] = tmp; | |
2651 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2652 { | |
2653 int iidx = ridx(i); | |
2654 x_vec[iidx+offset] = | |
2655 x_vec[iidx+offset] - tmp * data(i); | |
2656 } | |
2657 } | |
2658 } | |
2659 } | |
2660 | |
2661 // Calculation of 1-norm of inv(*this) | |
2662 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
2663 for (int i = 0; i < nr; i++) | |
2664 work[i] = 0.; | |
2665 | |
2666 for (int j = 0; j < nr; j++) | |
2667 { | |
2668 work[j] = 1.; | |
2669 | |
2670 for (int k = j; k < nr; k++) | |
2671 { | |
2672 | |
2673 if (work[k] != 0.) | |
2674 { | |
2675 double tmp = work[k] / data(cidx(k)); | |
2676 work[k] = tmp; | |
2677 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2678 { | |
2679 int iidx = ridx(i); | |
2680 work[iidx] = work[iidx] - tmp * data(i); | |
2681 } | |
2682 } | |
2683 } | |
2684 double atmp = 0; | |
2685 for (int i = j; i < nr; i++) | |
2686 { | |
2687 atmp += fabs(work[i]); | |
2688 work[i] = 0.; | |
2689 } | |
2690 if (atmp > ainvnorm) | |
2691 ainvnorm = atmp; | |
2692 } | |
2693 | |
2694 } | |
2695 | |
2696 rcond = 1. / ainvnorm / anorm; | |
2697 | |
2698 triangular_error: | |
2699 if (err != 0) | |
2700 { | |
2701 if (sing_handler) | |
2702 sing_handler (rcond); | |
2703 else | |
2704 (*current_liboctave_error_handler) | |
2705 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
2706 rcond); | |
2707 } | |
2708 | |
2709 volatile double rcond_plus_one = rcond + 1.0; | |
2710 | |
2711 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
2712 { | |
2713 err = -2; | |
2714 | |
2715 if (sing_handler) | |
2716 sing_handler (rcond); | |
2717 else | |
2718 (*current_liboctave_error_handler) | |
2719 ("matrix singular to machine precision, rcond = %g", | |
2720 rcond); | |
2721 } | |
2722 } | |
2723 else | |
2724 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
2725 } | |
2726 | |
2727 return retval; | |
2728 } | |
2729 | |
2730 SparseComplexMatrix | |
2731 SparseMatrix::ltsolve (SparseType &mattype, const SparseComplexMatrix& b, | |
2732 int& err, double& rcond, | |
2733 solve_singularity_handler sing_handler) const | |
2734 { | |
2735 SparseComplexMatrix retval; | |
2736 | |
2737 int nr = rows (); | |
2738 int nc = cols (); | |
2739 err = 0; | |
2740 | |
2741 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
2742 (*current_liboctave_error_handler) | |
2743 ("matrix dimension mismatch solution of linear equations"); | |
2744 else | |
2745 { | |
2746 // Print spparms("spumoni") info if requested | |
2747 int typ = mattype.type (); | |
2748 mattype.info (); | |
2749 | |
2750 if (typ == SparseType::Permuted_Lower || | |
2751 typ == SparseType::Lower) | |
2752 { | |
2753 double anorm = 0.; | |
2754 double ainvnorm = 0.; | |
2755 rcond = 0.; | |
2756 | |
2757 // Calculate the 1-norm of matrix for rcond calculation | |
2758 for (int j = 0; j < nr; j++) | |
2759 { | |
2760 double atmp = 0.; | |
2761 for (int i = cidx(j); i < cidx(j+1); i++) | |
2762 atmp += fabs(data(i)); | |
2763 if (atmp > anorm) | |
2764 anorm = atmp; | |
2765 } | |
2766 | |
2767 int b_nr = b.rows (); | |
2768 int b_nc = b.cols (); | |
2769 int b_nz = b.nnz (); | |
2770 retval = SparseComplexMatrix (b_nr, b_nc, b_nz); | |
2771 retval.xcidx(0) = 0; | |
2772 int ii = 0; | |
2773 int x_nz = b_nz; | |
2774 | |
2775 if (typ == SparseType::Permuted_Lower) | |
2776 { | |
2777 OCTAVE_LOCAL_BUFFER (Complex, work, nr); | |
2778 int *p_perm = mattype.triangular_row_perm (); | |
2779 int *q_perm = mattype.triangular_col_perm (); | |
2780 | |
2781 (*current_liboctave_warning_handler) | |
2782 ("SparseMatrix::solve XXX FIXME XXX permuted triangular code not tested"); | |
2783 | |
2784 for (int j = 0; j < b_nc; j++) | |
2785 { | |
2786 for (int i = 0; i < nr; i++) | |
2787 work[i] = 0.; | |
2788 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
2789 work[b.ridx(i)] = b.data(i); | |
2790 | |
2791 for (int k = 0; k < nr; k++) | |
2792 { | |
2793 int iidx = q_perm[k]; | |
2794 if (work[iidx] != 0.) | |
2795 { | |
2796 if (ridx(cidx(iidx)) != iidx) | |
2797 { | |
2798 err = -2; | |
2799 goto triangular_error; | |
2800 } | |
2801 | |
2802 Complex tmp = work[iidx] / data(cidx(iidx+1)-1); | |
2803 work[iidx] = tmp; | |
2804 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2805 { | |
2806 int idx2 = q_perm[ridx(i)]; | |
2807 work[idx2] = | |
2808 work[idx2] - tmp * data(i); | |
2809 } | |
2810 } | |
2811 } | |
2812 | |
2813 // Count non-zeros in work vector and adjust space in | |
2814 // retval if needed | |
2815 int new_nnz = 0; | |
2816 for (int i = 0; i < nr; i++) | |
2817 if (work[i] != 0.) | |
2818 new_nnz++; | |
2819 | |
2820 if (ii + new_nnz > x_nz) | |
2821 { | |
2822 // Resize the sparse matrix | |
2823 int sz = new_nnz * (b_nc - j) + x_nz; | |
2824 retval.change_capacity (sz); | |
2825 x_nz = sz; | |
2826 } | |
2827 | |
2828 for (int i = 0; i < nr; i++) | |
2829 if (work[p_perm[i]] != 0.) | |
2830 { | |
2831 retval.xridx(ii) = i; | |
2832 retval.xdata(ii++) = work[p_perm[i]]; | |
2833 } | |
2834 retval.xcidx(j+1) = ii; | |
2835 } | |
2836 | |
2837 retval.maybe_compress (); | |
2838 | |
2839 // Calculation of 1-norm of inv(*this) | |
2840 OCTAVE_LOCAL_BUFFER (double, work2, nr); | |
2841 for (int i = 0; i < nr; i++) | |
2842 work2[i] = 0.; | |
2843 | |
2844 for (int j = 0; j < nr; j++) | |
2845 { | |
2846 work2[q_perm[j]] = 1.; | |
2847 | |
2848 for (int k = 0; k < nr; k++) | |
2849 { | |
2850 int iidx = q_perm[k]; | |
2851 | |
2852 if (work2[iidx] != 0.) | |
2853 { | |
2854 double tmp = work2[iidx] / data(cidx(iidx+1)-1); | |
2855 work2[iidx] = tmp; | |
2856 for (int i = cidx(iidx)+1; i < cidx(iidx+1); i++) | |
2857 { | |
2858 int idx2 = q_perm[ridx(i)]; | |
2859 work2[idx2] = work2[idx2] - tmp * data(i); | |
2860 } | |
2861 } | |
2862 } | |
2863 double atmp = 0; | |
2864 for (int i = 0; i < j+1; i++) | |
2865 { | |
2866 atmp += fabs(work2[i]); | |
2867 work2[i] = 0.; | |
2868 } | |
2869 if (atmp > ainvnorm) | |
2870 ainvnorm = atmp; | |
2871 } | |
2872 } | |
2873 else | |
2874 { | |
2875 OCTAVE_LOCAL_BUFFER (Complex, work, nr); | |
2876 | |
2877 for (int j = 0; j < b_nc; j++) | |
2878 { | |
2879 for (int i = 0; i < nr; i++) | |
2880 work[i] = 0.; | |
2881 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
2882 work[b.ridx(i)] = b.data(i); | |
2883 | |
2884 for (int k = 0; k < nr; k++) | |
2885 { | |
2886 if (work[k] != 0.) | |
2887 { | |
2888 if (ridx(cidx(k)) != k) | |
2889 { | |
2890 err = -2; | |
2891 goto triangular_error; | |
2892 } | |
2893 | |
2894 Complex tmp = work[k] / data(cidx(k)); | |
2895 work[k] = tmp; | |
2896 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2897 { | |
2898 int iidx = ridx(i); | |
2899 work[iidx] = work[iidx] - tmp * data(i); | |
2900 } | |
2901 } | |
2902 } | |
2903 | |
2904 // Count non-zeros in work vector and adjust space in | |
2905 // retval if needed | |
2906 int new_nnz = 0; | |
2907 for (int i = 0; i < nr; i++) | |
2908 if (work[i] != 0.) | |
2909 new_nnz++; | |
2910 | |
2911 if (ii + new_nnz > x_nz) | |
2912 { | |
2913 // Resize the sparse matrix | |
2914 int sz = new_nnz * (b_nc - j) + x_nz; | |
2915 retval.change_capacity (sz); | |
2916 x_nz = sz; | |
2917 } | |
2918 | |
2919 for (int i = 0; i < nr; i++) | |
2920 if (work[i] != 0.) | |
2921 { | |
2922 retval.xridx(ii) = i; | |
2923 retval.xdata(ii++) = work[i]; | |
2924 } | |
2925 retval.xcidx(j+1) = ii; | |
2926 } | |
2927 | |
2928 retval.maybe_compress (); | |
2929 | |
2930 // Calculation of 1-norm of inv(*this) | |
2931 OCTAVE_LOCAL_BUFFER (double, work2, nr); | |
2932 for (int i = 0; i < nr; i++) | |
2933 work2[i] = 0.; | |
2934 | |
2935 for (int j = 0; j < nr; j++) | |
2936 { | |
2937 work2[j] = 1.; | |
2938 | |
2939 for (int k = j; k < nr; k++) | |
2940 { | |
2941 | |
2942 if (work2[k] != 0.) | |
2943 { | |
2944 double tmp = work2[k] / data(cidx(k)); | |
2945 work2[k] = tmp; | |
2946 for (int i = cidx(k)+1; i < cidx(k+1); i++) | |
2947 { | |
2948 int iidx = ridx(i); | |
2949 work2[iidx] = work2[iidx] - tmp * data(i); | |
2950 } | |
2951 } | |
2952 } | |
2953 double atmp = 0; | |
2954 for (int i = j; i < nr; i++) | |
2955 { | |
2956 atmp += fabs(work2[i]); | |
2957 work2[i] = 0.; | |
2958 } | |
2959 if (atmp > ainvnorm) | |
2960 ainvnorm = atmp; | |
2961 } | |
2962 | |
2963 } | |
2964 | |
2965 rcond = 1. / ainvnorm / anorm; | |
2966 | |
2967 triangular_error: | |
2968 if (err != 0) | |
2969 { | |
2970 if (sing_handler) | |
2971 sing_handler (rcond); | |
2972 else | |
2973 (*current_liboctave_error_handler) | |
2974 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
2975 rcond); | |
2976 } | |
2977 | |
2978 volatile double rcond_plus_one = rcond + 1.0; | |
2979 | |
2980 if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
2981 { | |
2982 err = -2; | |
2983 | |
2984 if (sing_handler) | |
2985 sing_handler (rcond); | |
2986 else | |
2987 (*current_liboctave_error_handler) | |
2988 ("matrix singular to machine precision, rcond = %g", | |
2989 rcond); | |
2990 } | |
2991 } | |
2992 else | |
2993 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
2994 } | |
2995 | |
2996 return retval; | |
2997 } | |
2998 | |
2999 Matrix | |
3000 SparseMatrix::trisolve (SparseType &mattype, const Matrix& b, int& err, | |
3001 double& rcond, | |
3002 solve_singularity_handler sing_handler) const | |
3003 { | |
3004 Matrix retval; | |
3005 | |
3006 int nr = rows (); | |
3007 int nc = cols (); | |
3008 err = 0; | |
3009 | |
3010 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
3011 (*current_liboctave_error_handler) | |
3012 ("matrix dimension mismatch solution of linear equations"); | |
3013 else | |
3014 { | |
3015 // Print spparms("spumoni") info if requested | |
3016 volatile int typ = mattype.type (); | |
3017 mattype.info (); | |
3018 | |
3019 if (typ == SparseType::Tridiagonal_Hermitian) | |
3020 { | |
3021 OCTAVE_LOCAL_BUFFER (double, D, nr); | |
3022 OCTAVE_LOCAL_BUFFER (double, DL, nr - 1); | |
3023 | |
3024 if (mattype.is_dense ()) | |
3025 { | |
3026 int ii = 0; | |
3027 | |
3028 for (int j = 0; j < nc-1; j++) | |
3029 { | |
3030 D[j] = data(ii++); | |
3031 DL[j] = data(ii); | |
3032 ii += 2; | |
3033 } | |
3034 D[nc-1] = data(ii); | |
3035 } | |
3036 else | |
3037 { | |
3038 D[0] = 0.; | |
3039 for (int i = 0; i < nr - 1; i++) | |
3040 { | |
3041 D[i+1] = 0.; | |
3042 DL[i] = 0.; | |
3043 } | |
3044 | |
3045 for (int j = 0; j < nc; j++) | |
3046 for (int i = cidx(j); i < cidx(j+1); i++) | |
3047 { | |
3048 if (ridx(i) == j) | |
3049 D[j] = data(i); | |
3050 else if (ridx(i) == j + 1) | |
3051 DL[j] = data(i); | |
3052 } | |
3053 } | |
3054 | |
3055 int b_nc = b.cols(); | |
3056 retval = b; | |
3057 double *result = retval.fortran_vec (); | |
3058 | |
3059 F77_XFCN (dptsv, DPTSV, (nr, b_nc, D, DL, result, | |
3060 b.rows(), err)); | |
3061 | |
3062 if (f77_exception_encountered) | |
3063 (*current_liboctave_error_handler) | |
3064 ("unrecoverable error in dptsv"); | |
3065 else if (err != 0) | |
3066 { | |
3067 err = 0; | |
3068 mattype.mark_as_unsymmetric (); | |
3069 typ = SparseType::Tridiagonal; | |
3070 } | |
3071 else | |
3072 rcond = 1.; | |
3073 } | |
3074 | |
3075 if (typ == SparseType::Tridiagonal) | |
3076 { | |
3077 OCTAVE_LOCAL_BUFFER (double, DU, nr - 1); | |
3078 OCTAVE_LOCAL_BUFFER (double, D, nr); | |
3079 OCTAVE_LOCAL_BUFFER (double, DL, nr - 1); | |
3080 | |
3081 if (mattype.is_dense ()) | |
3082 { | |
3083 int ii = 0; | |
3084 | |
3085 for (int j = 0; j < nc-1; j++) | |
3086 { | |
3087 D[j] = data(ii++); | |
3088 DL[j] = data(ii++); | |
3089 DU[j] = data(ii++); | |
3090 } | |
3091 D[nc-1] = data(ii); | |
3092 } | |
3093 else | |
3094 { | |
3095 D[0] = 0.; | |
3096 for (int i = 0; i < nr - 1; i++) | |
3097 { | |
3098 D[i+1] = 0.; | |
3099 DL[i] = 0.; | |
3100 DU[i] = 0.; | |
3101 } | |
3102 | |
3103 for (int j = 0; j < nc; j++) | |
3104 for (int i = cidx(j); i < cidx(j+1); i++) | |
3105 { | |
3106 if (ridx(i) == j) | |
3107 D[j] = data(i); | |
3108 else if (ridx(i) == j + 1) | |
3109 DL[j] = data(i); | |
3110 else if (ridx(i) == j - 1) | |
3111 DU[j] = data(i); | |
3112 } | |
3113 } | |
3114 | |
3115 int b_nc = b.cols(); | |
3116 retval = b; | |
3117 double *result = retval.fortran_vec (); | |
3118 | |
3119 F77_XFCN (dgtsv, DGTSV, (nr, b_nc, DL, D, DU, result, | |
3120 b.rows(), err)); | |
3121 | |
3122 if (f77_exception_encountered) | |
3123 (*current_liboctave_error_handler) | |
3124 ("unrecoverable error in dgtsv"); | |
3125 else if (err != 0) | |
3126 { | |
3127 rcond = 0.; | |
3128 err = -2; | |
3129 | |
3130 if (sing_handler) | |
3131 sing_handler (rcond); | |
3132 else | |
3133 (*current_liboctave_error_handler) | |
3134 ("matrix singular to machine precision"); | |
3135 | |
3136 } | |
3137 else | |
3138 rcond = 1.; | |
3139 } | |
3140 else if (typ != SparseType::Tridiagonal_Hermitian) | |
3141 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
3142 } | |
3143 | |
3144 return retval; | |
3145 } | |
3146 | |
3147 SparseMatrix | |
3148 SparseMatrix::trisolve (SparseType &mattype, const SparseMatrix& b, int& err, | |
3149 double& rcond, solve_singularity_handler sing_handler) const | |
3150 { | |
3151 SparseMatrix retval; | |
3152 | |
3153 int nr = rows (); | |
3154 int nc = cols (); | |
3155 err = 0; | |
3156 | |
3157 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
3158 (*current_liboctave_error_handler) | |
3159 ("matrix dimension mismatch solution of linear equations"); | |
3160 else | |
3161 { | |
3162 // Print spparms("spumoni") info if requested | |
3163 int typ = mattype.type (); | |
3164 mattype.info (); | |
3165 | |
3166 // Note can't treat symmetric case as there is no dpttrf function | |
3167 if (typ == SparseType::Tridiagonal || | |
3168 typ == SparseType::Tridiagonal_Hermitian) | |
3169 { | |
3170 OCTAVE_LOCAL_BUFFER (double, DU2, nr - 2); | |
3171 OCTAVE_LOCAL_BUFFER (double, DU, nr - 1); | |
3172 OCTAVE_LOCAL_BUFFER (double, D, nr); | |
3173 OCTAVE_LOCAL_BUFFER (double, DL, nr - 1); | |
3174 Array<int> ipvt (nr); | |
3175 int *pipvt = ipvt.fortran_vec (); | |
3176 | |
3177 if (mattype.is_dense ()) | |
3178 { | |
3179 int ii = 0; | |
3180 | |
3181 for (int j = 0; j < nc-1; j++) | |
3182 { | |
3183 D[j] = data(ii++); | |
3184 DL[j] = data(ii++); | |
3185 DU[j] = data(ii++); | |
3186 } | |
3187 D[nc-1] = data(ii); | |
3188 } | |
3189 else | |
3190 { | |
3191 D[0] = 0.; | |
3192 for (int i = 0; i < nr - 1; i++) | |
3193 { | |
3194 D[i+1] = 0.; | |
3195 DL[i] = 0.; | |
3196 DU[i] = 0.; | |
3197 } | |
3198 | |
3199 for (int j = 0; j < nc; j++) | |
3200 for (int i = cidx(j); i < cidx(j+1); i++) | |
3201 { | |
3202 if (ridx(i) == j) | |
3203 D[j] = data(i); | |
3204 else if (ridx(i) == j + 1) | |
3205 DL[j] = data(i); | |
3206 else if (ridx(i) == j - 1) | |
3207 DU[j] = data(i); | |
3208 } | |
3209 } | |
3210 | |
3211 F77_XFCN (dgttrf, DGTTRF, (nr, DL, D, DU, DU2, pipvt, err)); | |
3212 | |
3213 if (f77_exception_encountered) | |
3214 (*current_liboctave_error_handler) | |
3215 ("unrecoverable error in dgttrf"); | |
3216 else | |
3217 { | |
3218 rcond = 0.0; | |
3219 if (err != 0) | |
3220 { | |
3221 err = -2; | |
3222 | |
3223 if (sing_handler) | |
3224 sing_handler (rcond); | |
3225 else | |
3226 (*current_liboctave_error_handler) | |
3227 ("matrix singular to machine precision"); | |
3228 | |
3229 } | |
3230 else | |
3231 { | |
3232 char job = 'N'; | |
3233 volatile int x_nz = b.nnz (); | |
3234 int b_nc = b.cols (); | |
3235 retval = SparseMatrix (nr, b_nc, x_nz); | |
3236 retval.xcidx(0) = 0; | |
3237 volatile int ii = 0; | |
3238 | |
3239 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
3240 | |
3241 for (volatile int j = 0; j < b_nc; j++) | |
3242 { | |
3243 for (int i = 0; i < nr; i++) | |
3244 work[i] = 0.; | |
3245 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
3246 work[b.ridx(i)] = b.data(i); | |
3247 | |
3248 F77_XFCN (dgttrs, DGTTRS, | |
3249 (F77_CONST_CHAR_ARG2 (&job, 1), | |
3250 nr, 1, DL, D, DU, DU2, pipvt, | |
3251 work, b.rows (), err | |
3252 F77_CHAR_ARG_LEN (1))); | |
3253 | |
3254 if (f77_exception_encountered) | |
3255 { | |
3256 (*current_liboctave_error_handler) | |
3257 ("unrecoverable error in dgttrs"); | |
3258 break; | |
3259 } | |
3260 | |
3261 // Count non-zeros in work vector and adjust | |
3262 // space in retval if needed | |
3263 int new_nnz = 0; | |
3264 for (int i = 0; i < nr; i++) | |
3265 if (work[i] != 0.) | |
3266 new_nnz++; | |
3267 | |
3268 if (ii + new_nnz > x_nz) | |
3269 { | |
3270 // Resize the sparse matrix | |
3271 int sz = new_nnz * (b_nc - j) + x_nz; | |
3272 retval.change_capacity (sz); | |
3273 x_nz = sz; | |
3274 } | |
3275 | |
3276 for (int i = 0; i < nr; i++) | |
3277 if (work[i] != 0.) | |
3278 { | |
3279 retval.xridx(ii) = i; | |
3280 retval.xdata(ii++) = work[i]; | |
3281 } | |
3282 retval.xcidx(j+1) = ii; | |
3283 } | |
3284 | |
3285 retval.maybe_compress (); | |
3286 } | |
3287 } | |
3288 } | |
3289 else if (typ != SparseType::Tridiagonal_Hermitian) | |
3290 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
3291 } | |
3292 | |
3293 return retval; | |
3294 } | |
3295 | |
3296 ComplexMatrix | |
3297 SparseMatrix::trisolve (SparseType &mattype, const ComplexMatrix& b, int& err, | |
3298 double& rcond, solve_singularity_handler sing_handler) const | |
3299 { | |
3300 ComplexMatrix retval; | |
3301 | |
3302 int nr = rows (); | |
3303 int nc = cols (); | |
3304 err = 0; | |
3305 | |
3306 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
3307 (*current_liboctave_error_handler) | |
3308 ("matrix dimension mismatch solution of linear equations"); | |
3309 else | |
3310 { | |
3311 // Print spparms("spumoni") info if requested | |
3312 volatile int typ = mattype.type (); | |
3313 mattype.info (); | |
3314 | |
3315 // Note can't treat symmetric case as there is no dpttrf function | |
3316 if (typ == SparseType::Tridiagonal_Hermitian) | |
3317 { | |
3318 OCTAVE_LOCAL_BUFFER (Complex, D, nr); | |
3319 OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); | |
3320 | |
3321 if (mattype.is_dense ()) | |
3322 { | |
3323 int ii = 0; | |
3324 | |
3325 for (int j = 0; j < nc-1; j++) | |
3326 { | |
3327 D[j] = data(ii++); | |
3328 DL[j] = data(ii); | |
3329 ii += 2; | |
3330 } | |
3331 D[nc-1] = data(ii); | |
3332 } | |
3333 else | |
3334 { | |
3335 D[0] = 0.; | |
3336 for (int i = 0; i < nr - 1; i++) | |
3337 { | |
3338 D[i+1] = 0.; | |
3339 DL[i] = 0.; | |
3340 } | |
3341 | |
3342 for (int j = 0; j < nc; j++) | |
3343 for (int i = cidx(j); i < cidx(j+1); i++) | |
3344 { | |
3345 if (ridx(i) == j) | |
3346 D[j] = data(i); | |
3347 else if (ridx(i) == j + 1) | |
3348 DL[j] = data(i); | |
3349 } | |
3350 } | |
3351 | |
3352 int b_nr = b.rows (); | |
3353 int b_nc = b.cols(); | |
3354 rcond = 1.; | |
3355 | |
3356 retval = b; | |
3357 Complex *result = retval.fortran_vec (); | |
3358 | |
3359 F77_XFCN (zptsv, ZPTSV, (nr, b_nc, D, DL, result, | |
3360 b_nr, err)); | |
3361 | |
3362 if (f77_exception_encountered) | |
3363 { | |
3364 (*current_liboctave_error_handler) | |
3365 ("unrecoverable error in zptsv"); | |
3366 err = -1; | |
3367 } | |
3368 else if (err != 0) | |
3369 { | |
3370 err = 0; | |
3371 mattype.mark_as_unsymmetric (); | |
3372 typ = SparseType::Tridiagonal; | |
3373 } | |
3374 } | |
3375 | |
3376 if (typ == SparseType::Tridiagonal) | |
3377 { | |
3378 OCTAVE_LOCAL_BUFFER (Complex, DU, nr - 1); | |
3379 OCTAVE_LOCAL_BUFFER (Complex, D, nr); | |
3380 OCTAVE_LOCAL_BUFFER (Complex, DL, nr - 1); | |
3381 | |
3382 if (mattype.is_dense ()) | |
3383 { | |
3384 int ii = 0; | |
3385 | |
3386 for (int j = 0; j < nc-1; j++) | |
3387 { | |
3388 D[j] = data(ii++); | |
3389 DL[j] = data(ii++); | |
3390 DU[j] = data(ii++); | |
3391 } | |
3392 D[nc-1] = data(ii); | |
3393 } | |
3394 else | |
3395 { | |
3396 D[0] = 0.; | |
3397 for (int i = 0; i < nr - 1; i++) | |
3398 { | |
3399 D[i+1] = 0.; | |
3400 DL[i] = 0.; | |
3401 DU[i] = 0.; | |
3402 } | |
3403 | |
3404 for (int j = 0; j < nc; j++) | |
3405 for (int i = cidx(j); i < cidx(j+1); i++) | |
3406 { | |
3407 if (ridx(i) == j) | |
3408 D[j] = data(i); | |
3409 else if (ridx(i) == j + 1) | |
3410 DL[j] = data(i); | |
3411 else if (ridx(i) == j - 1) | |
3412 DU[j] = data(i); | |
3413 } | |
3414 } | |
3415 | |
3416 int b_nr = b.rows(); | |
3417 int b_nc = b.cols(); | |
3418 rcond = 1.; | |
3419 | |
3420 retval = b; | |
3421 Complex *result = retval.fortran_vec (); | |
3422 | |
3423 F77_XFCN (zgtsv, ZGTSV, (nr, b_nc, DL, D, DU, result, | |
3424 b_nr, err)); | |
3425 | |
3426 if (f77_exception_encountered) | |
3427 { | |
3428 (*current_liboctave_error_handler) | |
3429 ("unrecoverable error in zgtsv"); | |
3430 err = -1; | |
3431 } | |
3432 else if (err != 0) | |
3433 { | |
3434 rcond = 0.; | |
3435 err = -2; | |
3436 | |
3437 if (sing_handler) | |
3438 sing_handler (rcond); | |
3439 else | |
3440 (*current_liboctave_error_handler) | |
3441 ("matrix singular to machine precision"); | |
3442 } | |
3443 } | |
3444 else if (typ != SparseType::Tridiagonal_Hermitian) | |
3445 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
3446 } | |
3447 | |
3448 return retval; | |
3449 } | |
3450 | |
3451 SparseComplexMatrix | |
3452 SparseMatrix::trisolve (SparseType &mattype, const SparseComplexMatrix& b, | |
3453 int& err, double& rcond, | |
3454 solve_singularity_handler sing_handler) const | |
3455 { | |
3456 SparseComplexMatrix retval; | |
3457 | |
3458 int nr = rows (); | |
3459 int nc = cols (); | |
3460 err = 0; | |
3461 | |
3462 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
3463 (*current_liboctave_error_handler) | |
3464 ("matrix dimension mismatch solution of linear equations"); | |
3465 else | |
3466 { | |
3467 // Print spparms("spumoni") info if requested | |
3468 int typ = mattype.type (); | |
3469 mattype.info (); | |
3470 | |
3471 // Note can't treat symmetric case as there is no dpttrf function | |
3472 if (typ == SparseType::Tridiagonal || | |
3473 typ == SparseType::Tridiagonal_Hermitian) | |
3474 { | |
3475 OCTAVE_LOCAL_BUFFER (double, DU2, nr - 2); | |
3476 OCTAVE_LOCAL_BUFFER (double, DU, nr - 1); | |
3477 OCTAVE_LOCAL_BUFFER (double, D, nr); | |
3478 OCTAVE_LOCAL_BUFFER (double, DL, nr - 1); | |
3479 Array<int> ipvt (nr); | |
3480 int *pipvt = ipvt.fortran_vec (); | |
3481 | |
3482 if (mattype.is_dense ()) | |
3483 { | |
3484 int ii = 0; | |
3485 | |
3486 for (int j = 0; j < nc-1; j++) | |
3487 { | |
3488 D[j] = data(ii++); | |
3489 DL[j] = data(ii++); | |
3490 DU[j] = data(ii++); | |
3491 } | |
3492 D[nc-1] = data(ii); | |
3493 } | |
3494 else | |
3495 { | |
3496 D[0] = 0.; | |
3497 for (int i = 0; i < nr - 1; i++) | |
3498 { | |
3499 D[i+1] = 0.; | |
3500 DL[i] = 0.; | |
3501 DU[i] = 0.; | |
3502 } | |
3503 | |
3504 for (int j = 0; j < nc; j++) | |
3505 for (int i = cidx(j); i < cidx(j+1); i++) | |
3506 { | |
3507 if (ridx(i) == j) | |
3508 D[j] = data(i); | |
3509 else if (ridx(i) == j + 1) | |
3510 DL[j] = data(i); | |
3511 else if (ridx(i) == j - 1) | |
3512 DU[j] = data(i); | |
3513 } | |
3514 } | |
3515 | |
3516 F77_XFCN (dgttrf, DGTTRF, (nr, DL, D, DU, DU2, pipvt, err)); | |
3517 | |
3518 if (f77_exception_encountered) | |
3519 (*current_liboctave_error_handler) | |
3520 ("unrecoverable error in dgttrf"); | |
3521 else | |
3522 { | |
3523 rcond = 0.0; | |
3524 if (err != 0) | |
3525 { | |
3526 err = -2; | |
3527 | |
3528 if (sing_handler) | |
3529 sing_handler (rcond); | |
3530 else | |
3531 (*current_liboctave_error_handler) | |
3532 ("matrix singular to machine precision"); | |
3533 } | |
3534 else | |
3535 { | |
3536 rcond = 1.; | |
3537 char job = 'N'; | |
3538 int b_nr = b.rows (); | |
3539 int b_nc = b.cols (); | |
3540 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
3541 OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); | |
3542 | |
3543 // Take a first guess that the number of non-zero terms | |
3544 // will be as many as in b | |
3545 volatile int x_nz = b.nnz (); | |
3546 volatile int ii = 0; | |
3547 retval = SparseComplexMatrix (b_nr, b_nc, x_nz); | |
3548 | |
3549 retval.xcidx(0) = 0; | |
3550 for (volatile int j = 0; j < b_nc; j++) | |
3551 { | |
3552 | |
3553 for (int i = 0; i < b_nr; i++) | |
3554 { | |
3555 Complex c = b (i,j); | |
3556 Bx[i] = ::real (c); | |
3557 Bz[i] = ::imag (c); | |
3558 } | |
3559 | |
3560 | |
3561 F77_XFCN (dgttrs, DGTTRS, | |
3562 (F77_CONST_CHAR_ARG2 (&job, 1), | |
3563 nr, 1, DL, D, DU, DU2, pipvt, | |
3564 Bx, b_nr, err | |
3565 F77_CHAR_ARG_LEN (1))); | |
3566 | |
3567 if (f77_exception_encountered) | |
3568 { | |
3569 (*current_liboctave_error_handler) | |
3570 ("unrecoverable error in dgttrs"); | |
3571 break; | |
3572 } | |
3573 | |
3574 if (err != 0) | |
3575 { | |
3576 (*current_liboctave_error_handler) | |
3577 ("SparseMatrix::solve solve failed"); | |
3578 | |
3579 err = -1; | |
3580 break; | |
3581 } | |
3582 | |
3583 F77_XFCN (dgttrs, DGTTRS, | |
3584 (F77_CONST_CHAR_ARG2 (&job, 1), | |
3585 nr, 1, DL, D, DU, DU2, pipvt, | |
3586 Bz, b_nr, err | |
3587 F77_CHAR_ARG_LEN (1))); | |
3588 | |
3589 if (f77_exception_encountered) | |
3590 { | |
3591 (*current_liboctave_error_handler) | |
3592 ("unrecoverable error in dgttrs"); | |
3593 break; | |
3594 } | |
3595 | |
3596 if (err != 0) | |
3597 { | |
3598 (*current_liboctave_error_handler) | |
3599 ("SparseMatrix::solve solve failed"); | |
3600 | |
3601 err = -1; | |
3602 break; | |
3603 } | |
3604 | |
3605 // Count non-zeros in work vector and adjust | |
3606 // space in retval if needed | |
3607 int new_nnz = 0; | |
3608 for (int i = 0; i < nr; i++) | |
3609 if (Bx[i] != 0. || Bz[i] != 0.) | |
3610 new_nnz++; | |
3611 | |
3612 if (ii + new_nnz > x_nz) | |
3613 { | |
3614 // Resize the sparse matrix | |
3615 int sz = new_nnz * (b_nc - j) + x_nz; | |
3616 retval.change_capacity (sz); | |
3617 x_nz = sz; | |
3618 } | |
3619 | |
3620 for (int i = 0; i < nr; i++) | |
3621 if (Bx[i] != 0. || Bz[i] != 0.) | |
3622 { | |
3623 retval.xridx(ii) = i; | |
3624 retval.xdata(ii++) = | |
3625 Complex (Bx[i], Bz[i]); | |
3626 } | |
3627 | |
3628 retval.xcidx(j+1) = ii; | |
3629 } | |
3630 | |
3631 retval.maybe_compress (); | |
3632 } | |
3633 } | |
3634 } | |
3635 else if (typ != SparseType::Tridiagonal_Hermitian) | |
3636 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
3637 } | |
3638 | |
3639 return retval; | |
3640 } | |
3641 | |
3642 Matrix | |
3643 SparseMatrix::bsolve (SparseType &mattype, const Matrix& b, int& err, | |
3644 double& rcond, | |
3645 solve_singularity_handler sing_handler) const | |
3646 { | |
3647 Matrix retval; | |
3648 | |
3649 int nr = rows (); | |
3650 int nc = cols (); | |
3651 err = 0; | |
3652 | |
3653 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
3654 (*current_liboctave_error_handler) | |
3655 ("matrix dimension mismatch solution of linear equations"); | |
3656 else | |
3657 { | |
3658 // Print spparms("spumoni") info if requested | |
3659 volatile int typ = mattype.type (); | |
3660 mattype.info (); | |
3661 | |
3662 if (typ == SparseType::Banded_Hermitian) | |
3663 { | |
3664 int n_lower = mattype.nlower (); | |
3665 int ldm = n_lower + 1; | |
3666 Matrix m_band (ldm, nc); | |
3667 double *tmp_data = m_band.fortran_vec (); | |
3668 | |
3669 if (! mattype.is_dense ()) | |
3670 { | |
3671 int ii = 0; | |
3672 | |
3673 for (int j = 0; j < ldm; j++) | |
3674 for (int i = 0; i < nc; i++) | |
3675 tmp_data[ii++] = 0.; | |
3676 } | |
3677 | |
3678 for (int j = 0; j < nc; j++) | |
3679 for (int i = cidx(j); i < cidx(j+1); i++) | |
3680 { | |
3681 int ri = ridx (i); | |
3682 if (ri >= j) | |
3683 m_band(ri - j, j) = data(i); | |
3684 } | |
3685 | |
3686 // Calculate the norm of the matrix, for later use. | |
3687 // double anorm = m_band.abs().sum().row(0).max(); | |
3688 | |
3689 char job = 'L'; | |
3690 F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), | |
3691 nr, n_lower, tmp_data, ldm, err | |
3692 F77_CHAR_ARG_LEN (1))); | |
3693 | |
3694 if (f77_exception_encountered) | |
3695 (*current_liboctave_error_handler) | |
3696 ("unrecoverable error in dpbtrf"); | |
3697 else | |
3698 { | |
3699 rcond = 0.0; | |
3700 if (err != 0) | |
3701 { | |
3702 // Matrix is not positive definite!! Fall through to | |
3703 // unsymmetric banded solver. | |
3704 mattype.mark_as_unsymmetric (); | |
3705 typ = SparseType::Banded; | |
3706 err = 0; | |
3707 } | |
3708 else | |
3709 { | |
3710 // Unfortunately, the time to calculate the condition | |
3711 // number is dominant for narrow banded matrices and | |
3712 // so we rely on the "err" flag from xPBTRF to flag | |
3713 // singularity. The commented code below is left here | |
3714 // for reference | |
3715 | |
3716 //Array<double> z (3 * nr); | |
3717 //double *pz = z.fortran_vec (); | |
3718 //Array<int> iz (nr); | |
3719 //int *piz = iz.fortran_vec (); | |
3720 // | |
3721 //F77_XFCN (dpbcon, DGBCON, | |
3722 // (F77_CONST_CHAR_ARG2 (&job, 1), | |
3723 // nr, n_lower, tmp_data, ldm, | |
3724 // anorm, rcond, pz, piz, err | |
3725 // F77_CHAR_ARG_LEN (1))); | |
3726 // | |
3727 // | |
3728 //if (f77_exception_encountered) | |
3729 // (*current_liboctave_error_handler) | |
3730 // ("unrecoverable error in dpbcon"); | |
3731 // | |
3732 //if (err != 0) | |
3733 // err = -2; | |
3734 // | |
3735 //volatile double rcond_plus_one = rcond + 1.0; | |
3736 // | |
3737 //if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
3738 // { | |
3739 // err = -2; | |
3740 // | |
3741 // if (sing_handler) | |
3742 // sing_handler (rcond); | |
3743 // else | |
3744 // (*current_liboctave_error_handler) | |
3745 // ("matrix singular to machine precision, rcond = %g", | |
3746 // rcond); | |
3747 // } | |
3748 //else | |
3749 // REST OF CODE, EXCEPT rcond=1 | |
3750 | |
3751 rcond = 1.; | |
3752 retval = b; | |
3753 double *result = retval.fortran_vec (); | |
3754 | |
3755 int b_nc = b.cols (); | |
3756 | |
3757 F77_XFCN (dpbtrs, DPBTRS, | |
3758 (F77_CONST_CHAR_ARG2 (&job, 1), | |
3759 nr, n_lower, b_nc, tmp_data, | |
3760 ldm, result, b.rows(), err | |
3761 F77_CHAR_ARG_LEN (1))); | |
3762 | |
3763 if (f77_exception_encountered) | |
3764 (*current_liboctave_error_handler) | |
3765 ("unrecoverable error in dpbtrs"); | |
3766 | |
3767 if (err != 0) | |
3768 { | |
3769 (*current_liboctave_error_handler) | |
3770 ("SparseMatrix::solve solve failed"); | |
3771 err = -1; | |
3772 } | |
3773 } | |
3774 } | |
3775 } | |
3776 | |
3777 if (typ == SparseType::Banded) | |
3778 { | |
3779 // Create the storage for the banded form of the sparse matrix | |
3780 int n_upper = mattype.nupper (); | |
3781 int n_lower = mattype.nlower (); | |
3782 int ldm = n_upper + 2 * n_lower + 1; | |
3783 | |
3784 Matrix m_band (ldm, nc); | |
3785 double *tmp_data = m_band.fortran_vec (); | |
3786 | |
3787 if (! mattype.is_dense ()) | |
3788 { | |
3789 int ii = 0; | |
3790 | |
3791 for (int j = 0; j < ldm; j++) | |
3792 for (int i = 0; i < nc; i++) | |
3793 tmp_data[ii++] = 0.; | |
3794 } | |
3795 | |
3796 for (int j = 0; j < nc; j++) | |
3797 for (int i = cidx(j); i < cidx(j+1); i++) | |
3798 m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); | |
3799 | |
3800 Array<int> ipvt (nr); | |
3801 int *pipvt = ipvt.fortran_vec (); | |
3802 | |
3803 F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data, | |
3804 ldm, pipvt, err)); | |
3805 | |
3806 if (f77_exception_encountered) | |
3807 (*current_liboctave_error_handler) | |
3808 ("unrecoverable error in dgbtrf"); | |
3809 else | |
3810 { | |
3811 // Throw-away extra info LAPACK gives so as to not | |
3812 // change output. | |
3813 rcond = 0.0; | |
3814 if (err != 0) | |
3815 { | |
3816 err = -2; | |
3817 | |
3818 if (sing_handler) | |
3819 sing_handler (rcond); | |
3820 else | |
3821 (*current_liboctave_error_handler) | |
3822 ("matrix singular to machine precision"); | |
3823 | |
3824 } | |
3825 else | |
3826 { | |
3827 char job = '1'; | |
3828 | |
3829 // Unfortunately, the time to calculate the condition | |
3830 // number is dominant for narrow banded matrices and | |
3831 // so we rely on the "err" flag from xPBTRF to flag | |
3832 // singularity. The commented code below is left here | |
3833 // for reference | |
3834 | |
3835 //F77_XFCN (dgbcon, DGBCON, | |
3836 // (F77_CONST_CHAR_ARG2 (&job, 1), | |
3837 // nc, n_lower, n_upper, tmp_data, ldm, pipvt, | |
3838 // anorm, rcond, pz, piz, err | |
3839 // F77_CHAR_ARG_LEN (1))); | |
3840 // | |
3841 //if (f77_exception_encountered) | |
3842 // (*current_liboctave_error_handler) | |
3843 // ("unrecoverable error in dgbcon"); | |
3844 // | |
3845 // if (err != 0) | |
3846 // err = -2; | |
3847 // | |
3848 //volatile double rcond_plus_one = rcond + 1.0; | |
3849 // | |
3850 //if (rcond_plus_one == 1.0 || xisnan (rcond)) | |
3851 // { | |
3852 // err = -2; | |
3853 // | |
3854 // if (sing_handler) | |
3855 // sing_handler (rcond); | |
3856 // else | |
3857 // (*current_liboctave_error_handler) | |
3858 // ("matrix singular to machine precision, rcond = %g", | |
3859 // rcond); | |
3860 // } | |
3861 //else | |
3862 // REST OF CODE, EXCEPT rcond=1 | |
3863 | |
3864 rcond = 1.; | |
3865 retval = b; | |
3866 double *result = retval.fortran_vec (); | |
3867 | |
3868 int b_nc = b.cols (); | |
3869 | |
3870 job = 'N'; | |
3871 F77_XFCN (dgbtrs, DGBTRS, | |
3872 (F77_CONST_CHAR_ARG2 (&job, 1), | |
3873 nr, n_lower, n_upper, b_nc, tmp_data, | |
3874 ldm, pipvt, result, b.rows(), err | |
3875 F77_CHAR_ARG_LEN (1))); | |
3876 | |
3877 if (f77_exception_encountered) | |
3878 (*current_liboctave_error_handler) | |
3879 ("unrecoverable error in dgbtrs"); | |
3880 } | |
3881 } | |
3882 } | |
3883 else if (typ != SparseType::Banded_Hermitian) | |
3884 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
3885 } | |
3886 | |
3887 return retval; | |
3888 } | |
3889 | |
3890 SparseMatrix | |
3891 SparseMatrix::bsolve (SparseType &mattype, const SparseMatrix& b, int& err, | |
3892 double& rcond, solve_singularity_handler sing_handler) const | |
3893 { | |
3894 SparseMatrix retval; | |
3895 | |
3896 int nr = rows (); | |
3897 int nc = cols (); | |
3898 err = 0; | |
3899 | |
3900 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
3901 (*current_liboctave_error_handler) | |
3902 ("matrix dimension mismatch solution of linear equations"); | |
3903 else | |
3904 { | |
3905 // Print spparms("spumoni") info if requested | |
3906 volatile int typ = mattype.type (); | |
3907 mattype.info (); | |
3908 | |
3909 if (typ == SparseType::Banded_Hermitian) | |
3910 { | |
3911 int n_lower = mattype.nlower (); | |
3912 int ldm = n_lower + 1; | |
3913 | |
3914 Matrix m_band (ldm, nc); | |
3915 double *tmp_data = m_band.fortran_vec (); | |
3916 | |
3917 if (! mattype.is_dense ()) | |
3918 { | |
3919 int ii = 0; | |
3920 | |
3921 for (int j = 0; j < ldm; j++) | |
3922 for (int i = 0; i < nc; i++) | |
3923 tmp_data[ii++] = 0.; | |
3924 } | |
3925 | |
3926 for (int j = 0; j < nc; j++) | |
3927 for (int i = cidx(j); i < cidx(j+1); i++) | |
3928 { | |
3929 int ri = ridx (i); | |
3930 if (ri >= j) | |
3931 m_band(ri - j, j) = data(i); | |
3932 } | |
3933 | |
3934 char job = 'L'; | |
3935 F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), | |
3936 nr, n_lower, tmp_data, ldm, err | |
3937 F77_CHAR_ARG_LEN (1))); | |
3938 | |
3939 if (f77_exception_encountered) | |
3940 (*current_liboctave_error_handler) | |
3941 ("unrecoverable error in dpbtrf"); | |
3942 else | |
3943 { | |
3944 rcond = 0.0; | |
3945 if (err != 0) | |
3946 { | |
3947 mattype.mark_as_unsymmetric (); | |
3948 typ = SparseType::Banded; | |
3949 err = 0; | |
3950 } | |
3951 else | |
3952 { | |
3953 rcond = 1.; | |
3954 int b_nr = b.rows (); | |
3955 int b_nc = b.cols (); | |
3956 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
3957 | |
3958 // Take a first guess that the number of non-zero terms | |
3959 // will be as many as in b | |
3960 volatile int x_nz = b.nnz (); | |
3961 volatile int ii = 0; | |
3962 retval = SparseMatrix (b_nr, b_nc, x_nz); | |
3963 | |
3964 retval.xcidx(0) = 0; | |
3965 for (volatile int j = 0; j < b_nc; j++) | |
3966 { | |
3967 for (int i = 0; i < b_nr; i++) | |
3968 Bx[i] = b.elem (i, j); | |
3969 | |
3970 F77_XFCN (dpbtrs, DPBTRS, | |
3971 (F77_CONST_CHAR_ARG2 (&job, 1), | |
3972 nr, n_lower, 1, tmp_data, | |
3973 ldm, Bx, b_nr, err | |
3974 F77_CHAR_ARG_LEN (1))); | |
3975 | |
3976 if (f77_exception_encountered) | |
3977 { | |
3978 (*current_liboctave_error_handler) | |
3979 ("unrecoverable error in dpbtrs"); | |
3980 err = -1; | |
3981 break; | |
3982 } | |
3983 | |
3984 if (err != 0) | |
3985 { | |
3986 (*current_liboctave_error_handler) | |
3987 ("SparseMatrix::solve solve failed"); | |
3988 err = -1; | |
3989 break; | |
3990 } | |
3991 | |
3992 for (int i = 0; i < b_nr; i++) | |
3993 { | |
3994 double tmp = Bx[i]; | |
3995 if (tmp != 0.0) | |
3996 { | |
3997 if (ii == x_nz) | |
3998 { | |
3999 // Resize the sparse matrix | |
4000 int sz = x_nz * (b_nc - j) / b_nc; | |
4001 sz = (sz > 10 ? sz : 10) + x_nz; | |
4002 retval.change_capacity (sz); | |
4003 x_nz = sz; | |
4004 } | |
4005 retval.xdata(ii) = tmp; | |
4006 retval.xridx(ii++) = i; | |
4007 } | |
4008 } | |
4009 retval.xcidx(j+1) = ii; | |
4010 } | |
4011 | |
4012 retval.maybe_compress (); | |
4013 } | |
4014 } | |
4015 } | |
4016 | |
4017 if (typ == SparseType::Banded) | |
4018 { | |
4019 // Create the storage for the banded form of the sparse matrix | |
4020 int n_upper = mattype.nupper (); | |
4021 int n_lower = mattype.nlower (); | |
4022 int ldm = n_upper + 2 * n_lower + 1; | |
4023 | |
4024 Matrix m_band (ldm, nc); | |
4025 double *tmp_data = m_band.fortran_vec (); | |
4026 | |
4027 if (! mattype.is_dense ()) | |
4028 { | |
4029 int ii = 0; | |
4030 | |
4031 for (int j = 0; j < ldm; j++) | |
4032 for (int i = 0; i < nc; i++) | |
4033 tmp_data[ii++] = 0.; | |
4034 } | |
4035 | |
4036 for (int j = 0; j < nc; j++) | |
4037 for (int i = cidx(j); i < cidx(j+1); i++) | |
4038 m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); | |
4039 | |
4040 Array<int> ipvt (nr); | |
4041 int *pipvt = ipvt.fortran_vec (); | |
4042 | |
4043 F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data, | |
4044 ldm, pipvt, err)); | |
4045 | |
4046 if (f77_exception_encountered) | |
4047 (*current_liboctave_error_handler) | |
4048 ("unrecoverable error in dgbtrf"); | |
4049 else | |
4050 { | |
4051 rcond = 0.0; | |
4052 if (err != 0) | |
4053 { | |
4054 err = -2; | |
4055 | |
4056 if (sing_handler) | |
4057 sing_handler (rcond); | |
4058 else | |
4059 (*current_liboctave_error_handler) | |
4060 ("matrix singular to machine precision"); | |
4061 | |
4062 } | |
4063 else | |
4064 { | |
4065 char job = 'N'; | |
4066 volatile int x_nz = b.nnz (); | |
4067 int b_nc = b.cols (); | |
4068 retval = SparseMatrix (nr, b_nc, x_nz); | |
4069 retval.xcidx(0) = 0; | |
4070 volatile int ii = 0; | |
4071 | |
4072 OCTAVE_LOCAL_BUFFER (double, work, nr); | |
4073 | |
4074 for (volatile int j = 0; j < b_nc; j++) | |
4075 { | |
4076 for (int i = 0; i < nr; i++) | |
4077 work[i] = 0.; | |
4078 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
4079 work[b.ridx(i)] = b.data(i); | |
4080 | |
4081 F77_XFCN (dgbtrs, DGBTRS, | |
4082 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4083 nr, n_lower, n_upper, 1, tmp_data, | |
4084 ldm, pipvt, work, b.rows (), err | |
4085 F77_CHAR_ARG_LEN (1))); | |
4086 | |
4087 if (f77_exception_encountered) | |
4088 { | |
4089 (*current_liboctave_error_handler) | |
4090 ("unrecoverable error in dgbtrs"); | |
4091 break; | |
4092 } | |
4093 | |
4094 // Count non-zeros in work vector and adjust | |
4095 // space in retval if needed | |
4096 int new_nnz = 0; | |
4097 for (int i = 0; i < nr; i++) | |
4098 if (work[i] != 0.) | |
4099 new_nnz++; | |
4100 | |
4101 if (ii + new_nnz > x_nz) | |
4102 { | |
4103 // Resize the sparse matrix | |
4104 int sz = new_nnz * (b_nc - j) + x_nz; | |
4105 retval.change_capacity (sz); | |
4106 x_nz = sz; | |
4107 } | |
4108 | |
4109 for (int i = 0; i < nr; i++) | |
4110 if (work[i] != 0.) | |
4111 { | |
4112 retval.xridx(ii) = i; | |
4113 retval.xdata(ii++) = work[i]; | |
4114 } | |
4115 retval.xcidx(j+1) = ii; | |
4116 } | |
4117 | |
4118 retval.maybe_compress (); | |
4119 } | |
4120 } | |
4121 } | |
4122 else if (typ != SparseType::Banded_Hermitian) | |
4123 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
4124 } | |
4125 | |
4126 return retval; | |
4127 } | |
4128 | |
4129 ComplexMatrix | |
4130 SparseMatrix::bsolve (SparseType &mattype, const ComplexMatrix& b, int& err, | |
4131 double& rcond, solve_singularity_handler sing_handler) const | |
4132 { | |
4133 ComplexMatrix retval; | |
4134 | |
4135 int nr = rows (); | |
4136 int nc = cols (); | |
4137 err = 0; | |
4138 | |
4139 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
4140 (*current_liboctave_error_handler) | |
4141 ("matrix dimension mismatch solution of linear equations"); | |
4142 else | |
4143 { | |
4144 // Print spparms("spumoni") info if requested | |
4145 volatile int typ = mattype.type (); | |
4146 mattype.info (); | |
4147 | |
4148 if (typ == SparseType::Banded_Hermitian) | |
4149 { | |
4150 int n_lower = mattype.nlower (); | |
4151 int ldm = n_lower + 1; | |
4152 | |
4153 Matrix m_band (ldm, nc); | |
4154 double *tmp_data = m_band.fortran_vec (); | |
4155 | |
4156 if (! mattype.is_dense ()) | |
4157 { | |
4158 int ii = 0; | |
4159 | |
4160 for (int j = 0; j < ldm; j++) | |
4161 for (int i = 0; i < nc; i++) | |
4162 tmp_data[ii++] = 0.; | |
4163 } | |
4164 | |
4165 for (int j = 0; j < nc; j++) | |
4166 for (int i = cidx(j); i < cidx(j+1); i++) | |
4167 { | |
4168 int ri = ridx (i); | |
4169 if (ri >= j) | |
4170 m_band(ri - j, j) = data(i); | |
4171 } | |
4172 | |
4173 char job = 'L'; | |
4174 F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), | |
4175 nr, n_lower, tmp_data, ldm, err | |
4176 F77_CHAR_ARG_LEN (1))); | |
4177 | |
4178 if (f77_exception_encountered) | |
4179 (*current_liboctave_error_handler) | |
4180 ("unrecoverable error in dpbtrf"); | |
4181 else | |
4182 { | |
4183 rcond = 0.0; | |
4184 if (err != 0) | |
4185 { | |
4186 // Matrix is not positive definite!! Fall through to | |
4187 // unsymmetric banded solver. | |
4188 mattype.mark_as_unsymmetric (); | |
4189 typ = SparseType::Banded; | |
4190 err = 0; | |
4191 } | |
4192 else | |
4193 { | |
4194 rcond = 1.; | |
4195 int b_nr = b.rows (); | |
4196 int b_nc = b.cols (); | |
4197 | |
4198 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
4199 OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); | |
4200 | |
4201 retval.resize (b_nr, b_nc); | |
4202 | |
4203 for (volatile int j = 0; j < b_nc; j++) | |
4204 { | |
4205 for (int i = 0; i < b_nr; i++) | |
4206 { | |
4207 Complex c = b (i,j); | |
4208 Bx[i] = ::real (c); | |
4209 Bz[i] = ::imag (c); | |
4210 } | |
4211 | |
4212 F77_XFCN (dpbtrs, DPBTRS, | |
4213 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4214 nr, n_lower, 1, tmp_data, | |
4215 ldm, Bx, b_nr, err | |
4216 F77_CHAR_ARG_LEN (1))); | |
4217 | |
4218 if (f77_exception_encountered) | |
4219 { | |
4220 (*current_liboctave_error_handler) | |
4221 ("unrecoverable error in dpbtrs"); | |
4222 err = -1; | |
4223 break; | |
4224 } | |
4225 | |
4226 if (err != 0) | |
4227 { | |
4228 (*current_liboctave_error_handler) | |
4229 ("SparseMatrix::solve solve failed"); | |
4230 err = -1; | |
4231 break; | |
4232 } | |
4233 | |
4234 F77_XFCN (dpbtrs, DPBTRS, | |
4235 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4236 nr, n_lower, 1, tmp_data, | |
4237 ldm, Bz, b.rows(), err | |
4238 F77_CHAR_ARG_LEN (1))); | |
4239 | |
4240 if (f77_exception_encountered) | |
4241 { | |
4242 (*current_liboctave_error_handler) | |
4243 ("unrecoverable error in dpbtrs"); | |
4244 err = -1; | |
4245 break; | |
4246 } | |
4247 | |
4248 if (err != 0) | |
4249 { | |
4250 (*current_liboctave_error_handler) | |
4251 ("SparseMatrix::solve solve failed"); | |
4252 err = -1; | |
4253 break; | |
4254 } | |
4255 | |
4256 for (int i = 0; i < b_nr; i++) | |
4257 retval (i, j) = Complex (Bx[i], Bz[i]); | |
4258 } | |
4259 } | |
4260 } | |
4261 } | |
4262 | |
4263 if (typ == SparseType::Banded) | |
4264 { | |
4265 // Create the storage for the banded form of the sparse matrix | |
4266 int n_upper = mattype.nupper (); | |
4267 int n_lower = mattype.nlower (); | |
4268 int ldm = n_upper + 2 * n_lower + 1; | |
4269 | |
4270 Matrix m_band (ldm, nc); | |
4271 double *tmp_data = m_band.fortran_vec (); | |
4272 | |
4273 if (! mattype.is_dense ()) | |
4274 { | |
4275 int ii = 0; | |
4276 | |
4277 for (int j = 0; j < ldm; j++) | |
4278 for (int i = 0; i < nc; i++) | |
4279 tmp_data[ii++] = 0.; | |
4280 } | |
4281 | |
4282 for (int j = 0; j < nc; j++) | |
4283 for (int i = cidx(j); i < cidx(j+1); i++) | |
4284 m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); | |
4285 | |
4286 Array<int> ipvt (nr); | |
4287 int *pipvt = ipvt.fortran_vec (); | |
4288 | |
4289 F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data, | |
4290 ldm, pipvt, err)); | |
4291 | |
4292 if (f77_exception_encountered) | |
4293 (*current_liboctave_error_handler) | |
4294 ("unrecoverable error in dgbtrf"); | |
4295 else | |
4296 { | |
4297 rcond = 0.0; | |
4298 if (err != 0) | |
4299 { | |
4300 err = -2; | |
4301 | |
4302 if (sing_handler) | |
4303 sing_handler (rcond); | |
4304 else | |
4305 (*current_liboctave_error_handler) | |
4306 ("matrix singular to machine precision"); | |
4307 | |
4308 } | |
4309 else | |
4310 { | |
4311 char job = 'N'; | |
4312 int b_nc = b.cols (); | |
4313 retval.resize (nr,b_nc); | |
4314 | |
4315 OCTAVE_LOCAL_BUFFER (double, Bz, nr); | |
4316 OCTAVE_LOCAL_BUFFER (double, Bx, nr); | |
4317 | |
4318 for (volatile int j = 0; j < b_nc; j++) | |
4319 { | |
4320 for (int i = 0; i < nr; i++) | |
4321 { | |
4322 Complex c = b (i, j); | |
4323 Bx[i] = ::real (c); | |
4324 Bz[i] = ::imag (c); | |
4325 } | |
4326 | |
4327 F77_XFCN (dgbtrs, DGBTRS, | |
4328 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4329 nr, n_lower, n_upper, 1, tmp_data, | |
4330 ldm, pipvt, Bx, b.rows (), err | |
4331 F77_CHAR_ARG_LEN (1))); | |
4332 | |
4333 if (f77_exception_encountered) | |
4334 { | |
4335 (*current_liboctave_error_handler) | |
4336 ("unrecoverable error in dgbtrs"); | |
4337 break; | |
4338 } | |
4339 | |
4340 F77_XFCN (dgbtrs, DGBTRS, | |
4341 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4342 nr, n_lower, n_upper, 1, tmp_data, | |
4343 ldm, pipvt, Bz, b.rows (), err | |
4344 F77_CHAR_ARG_LEN (1))); | |
4345 | |
4346 if (f77_exception_encountered) | |
4347 { | |
4348 (*current_liboctave_error_handler) | |
4349 ("unrecoverable error in dgbtrs"); | |
4350 break; | |
4351 } | |
4352 | |
4353 for (int i = 0; i < nr; i++) | |
4354 retval (i, j) = Complex (Bx[i], Bz[i]); | |
4355 } | |
4356 } | |
4357 } | |
4358 } | |
4359 else if (typ != SparseType::Banded_Hermitian) | |
4360 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
4361 } | |
4362 | |
4363 return retval; | |
4364 } | |
4365 | |
4366 SparseComplexMatrix | |
4367 SparseMatrix::bsolve (SparseType &mattype, const SparseComplexMatrix& b, | |
4368 int& err, double& rcond, | |
4369 solve_singularity_handler sing_handler) const | |
4370 { | |
4371 SparseComplexMatrix retval; | |
4372 | |
4373 int nr = rows (); | |
4374 int nc = cols (); | |
4375 err = 0; | |
4376 | |
4377 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
4378 (*current_liboctave_error_handler) | |
4379 ("matrix dimension mismatch solution of linear equations"); | |
4380 else | |
4381 { | |
4382 // Print spparms("spumoni") info if requested | |
4383 volatile int typ = mattype.type (); | |
4384 mattype.info (); | |
4385 | |
4386 if (typ == SparseType::Banded_Hermitian) | |
4387 { | |
4388 int n_lower = mattype.nlower (); | |
4389 int ldm = n_lower + 1; | |
4390 | |
4391 Matrix m_band (ldm, nc); | |
4392 double *tmp_data = m_band.fortran_vec (); | |
4393 | |
4394 if (! mattype.is_dense ()) | |
4395 { | |
4396 int ii = 0; | |
4397 | |
4398 for (int j = 0; j < ldm; j++) | |
4399 for (int i = 0; i < nc; i++) | |
4400 tmp_data[ii++] = 0.; | |
4401 } | |
4402 | |
4403 for (int j = 0; j < nc; j++) | |
4404 for (int i = cidx(j); i < cidx(j+1); i++) | |
4405 { | |
4406 int ri = ridx (i); | |
4407 if (ri >= j) | |
4408 m_band(ri - j, j) = data(i); | |
4409 } | |
4410 | |
4411 char job = 'L'; | |
4412 F77_XFCN (dpbtrf, DPBTRF, (F77_CONST_CHAR_ARG2 (&job, 1), | |
4413 nr, n_lower, tmp_data, ldm, err | |
4414 F77_CHAR_ARG_LEN (1))); | |
4415 | |
4416 if (f77_exception_encountered) | |
4417 (*current_liboctave_error_handler) | |
4418 ("unrecoverable error in dpbtrf"); | |
4419 else | |
4420 { | |
4421 rcond = 0.0; | |
4422 if (err != 0) | |
4423 { | |
4424 // Matrix is not positive definite!! Fall through to | |
4425 // unsymmetric banded solver. | |
4426 mattype.mark_as_unsymmetric (); | |
4427 typ = SparseType::Banded; | |
4428 | |
4429 err = 0; | |
4430 } | |
4431 else | |
4432 { | |
4433 rcond = 1.; | |
4434 int b_nr = b.rows (); | |
4435 int b_nc = b.cols (); | |
4436 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
4437 OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); | |
4438 | |
4439 // Take a first guess that the number of non-zero terms | |
4440 // will be as many as in b | |
4441 volatile int x_nz = b.nnz (); | |
4442 volatile int ii = 0; | |
4443 retval = SparseComplexMatrix (b_nr, b_nc, x_nz); | |
4444 | |
4445 retval.xcidx(0) = 0; | |
4446 for (volatile int j = 0; j < b_nc; j++) | |
4447 { | |
4448 | |
4449 for (int i = 0; i < b_nr; i++) | |
4450 { | |
4451 Complex c = b (i,j); | |
4452 Bx[i] = ::real (c); | |
4453 Bz[i] = ::imag (c); | |
4454 } | |
4455 | |
4456 F77_XFCN (dpbtrs, DPBTRS, | |
4457 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4458 nr, n_lower, 1, tmp_data, | |
4459 ldm, Bx, b_nr, err | |
4460 F77_CHAR_ARG_LEN (1))); | |
4461 | |
4462 if (f77_exception_encountered) | |
4463 { | |
4464 (*current_liboctave_error_handler) | |
4465 ("unrecoverable error in dpbtrs"); | |
4466 err = -1; | |
4467 break; | |
4468 } | |
4469 | |
4470 if (err != 0) | |
4471 { | |
4472 (*current_liboctave_error_handler) | |
4473 ("SparseMatrix::solve solve failed"); | |
4474 err = -1; | |
4475 break; | |
4476 } | |
4477 | |
4478 F77_XFCN (dpbtrs, DPBTRS, | |
4479 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4480 nr, n_lower, 1, tmp_data, | |
4481 ldm, Bz, b_nr, err | |
4482 F77_CHAR_ARG_LEN (1))); | |
4483 | |
4484 if (f77_exception_encountered) | |
4485 { | |
4486 (*current_liboctave_error_handler) | |
4487 ("unrecoverable error in dpbtrs"); | |
4488 err = -1; | |
4489 break; | |
4490 } | |
4491 | |
4492 if (err != 0) | |
4493 { | |
4494 (*current_liboctave_error_handler) | |
4495 ("SparseMatrix::solve solve failed"); | |
4496 | |
4497 err = -1; | |
4498 break; | |
4499 } | |
4500 | |
4501 // Count non-zeros in work vector and adjust | |
4502 // space in retval if needed | |
4503 int new_nnz = 0; | |
4504 for (int i = 0; i < nr; i++) | |
4505 if (Bx[i] != 0. || Bz[i] != 0.) | |
4506 new_nnz++; | |
4507 | |
4508 if (ii + new_nnz > x_nz) | |
4509 { | |
4510 // Resize the sparse matrix | |
4511 int sz = new_nnz * (b_nc - j) + x_nz; | |
4512 retval.change_capacity (sz); | |
4513 x_nz = sz; | |
4514 } | |
4515 | |
4516 for (int i = 0; i < nr; i++) | |
4517 if (Bx[i] != 0. || Bz[i] != 0.) | |
4518 { | |
4519 retval.xridx(ii) = i; | |
4520 retval.xdata(ii++) = | |
4521 Complex (Bx[i], Bz[i]); | |
4522 } | |
4523 | |
4524 retval.xcidx(j+1) = ii; | |
4525 } | |
4526 | |
4527 retval.maybe_compress (); | |
4528 } | |
4529 } | |
4530 } | |
4531 | |
4532 if (typ == SparseType::Banded) | |
4533 { | |
4534 // Create the storage for the banded form of the sparse matrix | |
4535 int n_upper = mattype.nupper (); | |
4536 int n_lower = mattype.nlower (); | |
4537 int ldm = n_upper + 2 * n_lower + 1; | |
4538 | |
4539 Matrix m_band (ldm, nc); | |
4540 double *tmp_data = m_band.fortran_vec (); | |
4541 | |
4542 if (! mattype.is_dense ()) | |
4543 { | |
4544 int ii = 0; | |
4545 | |
4546 for (int j = 0; j < ldm; j++) | |
4547 for (int i = 0; i < nc; i++) | |
4548 tmp_data[ii++] = 0.; | |
4549 } | |
4550 | |
4551 for (int j = 0; j < nc; j++) | |
4552 for (int i = cidx(j); i < cidx(j+1); i++) | |
4553 m_band(ridx(i) - j + n_lower + n_upper, j) = data(i); | |
4554 | |
4555 Array<int> ipvt (nr); | |
4556 int *pipvt = ipvt.fortran_vec (); | |
4557 | |
4558 F77_XFCN (dgbtrf, DGBTRF, (nr, nr, n_lower, n_upper, tmp_data, | |
4559 ldm, pipvt, err)); | |
4560 | |
4561 if (f77_exception_encountered) | |
4562 (*current_liboctave_error_handler) | |
4563 ("unrecoverable error in dgbtrf"); | |
4564 else | |
4565 { | |
4566 rcond = 0.0; | |
4567 if (err != 0) | |
4568 { | |
4569 err = -2; | |
4570 | |
4571 if (sing_handler) | |
4572 sing_handler (rcond); | |
4573 else | |
4574 (*current_liboctave_error_handler) | |
4575 ("matrix singular to machine precision"); | |
4576 | |
4577 } | |
4578 else | |
4579 { | |
4580 char job = 'N'; | |
4581 volatile int x_nz = b.nnz (); | |
4582 int b_nc = b.cols (); | |
4583 retval = SparseComplexMatrix (nr, b_nc, x_nz); | |
4584 retval.xcidx(0) = 0; | |
4585 volatile int ii = 0; | |
4586 | |
4587 OCTAVE_LOCAL_BUFFER (double, Bx, nr); | |
4588 OCTAVE_LOCAL_BUFFER (double, Bz, nr); | |
4589 | |
4590 for (volatile int j = 0; j < b_nc; j++) | |
4591 { | |
4592 for (int i = 0; i < nr; i++) | |
4593 { | |
4594 Bx[i] = 0.; | |
4595 Bz[i] = 0.; | |
4596 } | |
4597 for (int i = b.cidx(j); i < b.cidx(j+1); i++) | |
4598 { | |
4599 Complex c = b.data(i); | |
4600 Bx[b.ridx(i)] = ::real (c); | |
4601 Bz[b.ridx(i)] = ::imag (c); | |
4602 } | |
4603 | |
4604 F77_XFCN (dgbtrs, DGBTRS, | |
4605 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4606 nr, n_lower, n_upper, 1, tmp_data, | |
4607 ldm, pipvt, Bx, b.rows (), err | |
4608 F77_CHAR_ARG_LEN (1))); | |
4609 | |
4610 if (f77_exception_encountered) | |
4611 { | |
4612 (*current_liboctave_error_handler) | |
4613 ("unrecoverable error in dgbtrs"); | |
4614 break; | |
4615 } | |
4616 | |
4617 F77_XFCN (dgbtrs, DGBTRS, | |
4618 (F77_CONST_CHAR_ARG2 (&job, 1), | |
4619 nr, n_lower, n_upper, 1, tmp_data, | |
4620 ldm, pipvt, Bz, b.rows (), err | |
4621 F77_CHAR_ARG_LEN (1))); | |
4622 | |
4623 if (f77_exception_encountered) | |
4624 { | |
4625 (*current_liboctave_error_handler) | |
4626 ("unrecoverable error in dgbtrs"); | |
4627 break; | |
4628 } | |
4629 | |
4630 // Count non-zeros in work vector and adjust | |
4631 // space in retval if needed | |
4632 int new_nnz = 0; | |
4633 for (int i = 0; i < nr; i++) | |
4634 if (Bx[i] != 0. || Bz[i] != 0.) | |
4635 new_nnz++; | |
4636 | |
4637 if (ii + new_nnz > x_nz) | |
4638 { | |
4639 // Resize the sparse matrix | |
4640 int sz = new_nnz * (b_nc - j) + x_nz; | |
4641 retval.change_capacity (sz); | |
4642 x_nz = sz; | |
4643 } | |
4644 | |
4645 for (int i = 0; i < nr; i++) | |
4646 if (Bx[i] != 0. || Bz[i] != 0.) | |
4647 { | |
4648 retval.xridx(ii) = i; | |
4649 retval.xdata(ii++) = | |
4650 Complex (Bx[i], Bz[i]); | |
4651 } | |
4652 retval.xcidx(j+1) = ii; | |
4653 } | |
4654 | |
4655 retval.maybe_compress (); | |
4656 } | |
4657 } | |
4658 } | |
4659 else if (typ != SparseType::Banded_Hermitian) | |
4660 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
4661 } | |
4662 | |
4663 return retval; | |
4664 } | |
4665 | |
4666 void * | |
4667 SparseMatrix::factorize (int& err, double &rcond, Matrix &Control, Matrix &Info, | |
4668 solve_singularity_handler sing_handler) const | |
4669 { | |
4670 // The return values | |
4671 void *Numeric; | |
4672 err = 0; | |
4673 | |
4674 // Setup the control parameters | |
4675 Control = Matrix (UMFPACK_CONTROL, 1); | |
4676 double *control = Control.fortran_vec (); | |
4677 umfpack_di_defaults (control); | |
4678 | |
4679 double tmp = Voctave_sparse_controls.get_key ("spumoni"); | |
4680 if (!xisnan (tmp)) | |
4681 Control (UMFPACK_PRL) = tmp; | |
4682 tmp = Voctave_sparse_controls.get_key ("piv_tol"); | |
4683 if (!xisnan (tmp)) | |
4684 { | |
4685 Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; | |
4686 Control (UMFPACK_PIVOT_TOLERANCE) = tmp; | |
4687 } | |
4688 | |
4689 // Set whether we are allowed to modify Q or not | |
4690 tmp = Voctave_sparse_controls.get_key ("autoamd"); | |
4691 if (!xisnan (tmp)) | |
4692 Control (UMFPACK_FIXQ) = tmp; | |
4693 | |
4694 umfpack_di_report_control (control); | |
4695 | |
4696 const int *Ap = cidx (); | |
4697 const int *Ai = ridx (); | |
4698 const double *Ax = data (); | |
4699 int nr = rows (); | |
4700 int nc = cols (); | |
4701 | |
4702 umfpack_di_report_matrix (nr, nc, Ap, Ai, Ax, 1, control); | |
4703 | |
4704 void *Symbolic; | |
4705 Info = Matrix (1, UMFPACK_INFO); | |
4706 double *info = Info.fortran_vec (); | |
4707 int status = umfpack_di_qsymbolic (nr, nc, Ap, Ai, Ax, NULL, | |
4708 &Symbolic, control, info); | |
4709 | |
4710 if (status < 0) | |
4711 { | |
4712 (*current_liboctave_error_handler) | |
4713 ("SparseMatrix::solve symbolic factorization failed"); | |
4714 err = -1; | |
4715 | |
4716 umfpack_di_report_status (control, status); | |
4717 umfpack_di_report_info (control, info); | |
4718 | |
4719 umfpack_di_free_symbolic (&Symbolic) ; | |
4720 } | |
4721 else | |
4722 { | |
4723 umfpack_di_report_symbolic (Symbolic, control); | |
4724 | |
4725 status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, | |
4726 control, info) ; | |
4727 umfpack_di_free_symbolic (&Symbolic) ; | |
4728 | |
4729 #ifdef HAVE_LSSOLVE | |
4730 rcond = Info (UMFPACK_RCOND); | |
4731 volatile double rcond_plus_one = rcond + 1.0; | |
4732 | |
4733 if (status == UMFPACK_WARNING_singular_matrix || | |
4734 rcond_plus_one == 1.0 || xisnan (rcond)) | |
4735 { | |
4736 umfpack_di_report_numeric (Numeric, control); | |
4737 | |
4738 err = -2; | |
4739 | |
4740 if (sing_handler) | |
4741 sing_handler (rcond); | |
4742 else | |
4743 (*current_liboctave_error_handler) | |
4744 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
4745 rcond); | |
4746 | |
4747 } | |
4748 else | |
4749 #endif | |
4750 if (status < 0) | |
4751 { | |
4752 (*current_liboctave_error_handler) | |
4753 ("SparseMatrix::solve numeric factorization failed"); | |
4754 | |
4755 umfpack_di_report_status (control, status); | |
4756 umfpack_di_report_info (control, info); | |
4757 | |
4758 err = -1; | |
4759 } | |
4760 else | |
4761 { | |
4762 umfpack_di_report_numeric (Numeric, control); | |
4763 } | |
4764 } | |
4765 | |
4766 if (err != 0) | |
4767 umfpack_di_free_numeric (&Numeric); | |
4768 | |
4769 return Numeric; | |
4770 } | |
4771 | |
4772 Matrix | |
4773 SparseMatrix::fsolve (SparseType &mattype, const Matrix& b, int& err, | |
4774 double& rcond, | |
4775 solve_singularity_handler sing_handler) const | |
4776 { | |
4777 Matrix retval; | |
4778 | |
4779 int nr = rows (); | |
4780 int nc = cols (); | |
4781 err = 0; | |
4782 | |
4783 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
4784 (*current_liboctave_error_handler) | |
4785 ("matrix dimension mismatch solution of linear equations"); | |
4786 else | |
4787 { | |
4788 // Print spparms("spumoni") info if requested | |
4789 int typ = mattype.type (); | |
4790 mattype.info (); | |
4791 | |
4792 if (typ == SparseType::Hermitian) | |
4793 { | |
4794 // XXX FIXME XXX Write the cholesky solver and only fall | |
4795 // through if cholesky factorization fails | |
4796 | |
4797 (*current_liboctave_warning_handler) | |
4798 ("SparseMatrix::solve XXX FIXME XXX Cholesky code not done"); | |
4799 | |
4800 mattype.mark_as_unsymmetric (); | |
4801 typ = SparseType::Full; | |
4802 } | |
4803 | |
4804 if (typ == SparseType::Full) | |
4805 { | |
4806 Matrix Control, Info; | |
4807 void *Numeric = | |
4808 factorize (err, rcond, Control, Info, sing_handler); | |
4809 | |
4810 if (err == 0) | |
4811 { | |
4812 const double *Bx = b.fortran_vec (); | |
4813 retval.resize (b.rows (), b.cols()); | |
4814 double *result = retval.fortran_vec (); | |
4815 int b_nr = b.rows (); | |
4816 int b_nc = b.cols (); | |
4817 int status = 0; | |
4818 double *control = Control.fortran_vec (); | |
4819 double *info = Info.fortran_vec (); | |
4820 const int *Ap = cidx (); | |
4821 const int *Ai = ridx (); | |
4822 const double *Ax = data (); | |
4823 | |
4824 for (int j = 0, iidx = 0; j < b_nc; j++, iidx += b_nr) | |
4825 { | |
4826 status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, | |
4827 &result[iidx], &Bx[iidx], | |
4828 Numeric, control, info); | |
4829 if (status < 0) | |
4830 { | |
4831 (*current_liboctave_error_handler) | |
4832 ("SparseMatrix::solve solve failed"); | |
4833 | |
4834 umfpack_di_report_status (control, status); | |
4835 | |
4836 err = -1; | |
4837 | |
4838 break; | |
4839 } | |
4840 } | |
4841 | |
4842 #ifndef HAVE_LSSOLVE | |
4843 rcond = Info (UMFPACK_RCOND); | |
4844 volatile double rcond_plus_one = rcond + 1.0; | |
4845 | |
4846 if (status == UMFPACK_WARNING_singular_matrix || | |
4847 rcond_plus_one == 1.0 || xisnan (rcond)) | |
4848 { | |
4849 err = -2; | |
4850 | |
4851 if (sing_handler) | |
4852 sing_handler (rcond); | |
4853 else | |
4854 (*current_liboctave_error_handler) | |
4855 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
4856 rcond); | |
4857 | |
4858 } | |
4859 #endif | |
4860 | |
4861 umfpack_di_report_info (control, info); | |
4862 | |
4863 umfpack_di_free_numeric (&Numeric); | |
4864 } | |
4865 } | |
4866 else if (typ != SparseType::Hermitian) | |
4867 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
4868 } | |
4869 | |
4870 return retval; | |
4871 } | |
4872 | |
4873 SparseMatrix | |
4874 SparseMatrix::fsolve (SparseType &mattype, const SparseMatrix& b, int& err, double& rcond, | |
4875 solve_singularity_handler sing_handler) const | |
4876 { | |
4877 SparseMatrix retval; | |
4878 | |
4879 int nr = rows (); | |
4880 int nc = cols (); | |
4881 err = 0; | |
4882 | |
4883 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
4884 (*current_liboctave_error_handler) | |
4885 ("matrix dimension mismatch solution of linear equations"); | |
4886 else | |
4887 { | |
4888 // Print spparms("spumoni") info if requested | |
4889 int typ = mattype.type (); | |
4890 mattype.info (); | |
4891 | |
4892 if (typ == SparseType::Hermitian) | |
4893 { | |
4894 // XXX FIXME XXX Write the cholesky solver and only fall | |
4895 // through if cholesky factorization fails | |
4896 | |
4897 (*current_liboctave_warning_handler) | |
4898 ("SparseMatrix::solve XXX FIXME XXX Cholesky code not done"); | |
4899 | |
4900 mattype.mark_as_unsymmetric (); | |
4901 typ = SparseType::Full; | |
4902 } | |
4903 | |
4904 if (typ == SparseType::Full) | |
4905 { | |
4906 Matrix Control, Info; | |
4907 void *Numeric = factorize (err, rcond, Control, Info, | |
4908 sing_handler); | |
4909 | |
4910 if (err == 0) | |
4911 { | |
4912 int b_nr = b.rows (); | |
4913 int b_nc = b.cols (); | |
4914 int status = 0; | |
4915 double *control = Control.fortran_vec (); | |
4916 double *info = Info.fortran_vec (); | |
4917 const int *Ap = cidx (); | |
4918 const int *Ai = ridx (); | |
4919 const double *Ax = data (); | |
4920 | |
4921 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
4922 OCTAVE_LOCAL_BUFFER (double, Xx, b_nr); | |
4923 | |
4924 // Take a first guess that the number of non-zero terms | |
4925 // will be as many as in b | |
4926 int x_nz = b.nnz (); | |
4927 int ii = 0; | |
4928 retval = SparseMatrix (b_nr, b_nc, x_nz); | |
4929 | |
4930 retval.xcidx(0) = 0; | |
4931 for (int j = 0; j < b_nc; j++) | |
4932 { | |
4933 | |
4934 for (int i = 0; i < b_nr; i++) | |
4935 Bx[i] = b.elem (i, j); | |
4936 | |
4937 status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, Xx, | |
4938 Bx, Numeric, control, | |
4939 info); | |
4940 if (status < 0) | |
4941 { | |
4942 (*current_liboctave_error_handler) | |
4943 ("SparseMatrix::solve solve failed"); | |
4944 | |
4945 umfpack_di_report_status (control, status); | |
4946 | |
4947 err = -1; | |
4948 | |
4949 break; | |
4950 } | |
4951 | |
4952 for (int i = 0; i < b_nr; i++) | |
4953 { | |
4954 double tmp = Xx[i]; | |
4955 if (tmp != 0.0) | |
4956 { | |
4957 if (ii == x_nz) | |
4958 { | |
4959 // Resize the sparse matrix | |
4960 int sz = x_nz * (b_nc - j) / b_nc; | |
4961 sz = (sz > 10 ? sz : 10) + x_nz; | |
4962 retval.change_capacity (sz); | |
4963 x_nz = sz; | |
4964 } | |
4965 retval.xdata(ii) = tmp; | |
4966 retval.xridx(ii++) = i; | |
4967 } | |
4968 } | |
4969 retval.xcidx(j+1) = ii; | |
4970 } | |
4971 | |
4972 retval.maybe_compress (); | |
4973 | |
4974 #ifndef HAVE_LSSOLVE | |
4975 rcond = Info (UMFPACK_RCOND); | |
4976 volatile double rcond_plus_one = rcond + 1.0; | |
4977 | |
4978 if (status == UMFPACK_WARNING_singular_matrix || | |
4979 rcond_plus_one == 1.0 || xisnan (rcond)) | |
4980 { | |
4981 err = -2; | |
4982 | |
4983 if (sing_handler) | |
4984 sing_handler (rcond); | |
4985 else | |
4986 (*current_liboctave_error_handler) | |
4987 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
4988 rcond); | |
4989 | |
4990 } | |
4991 #endif | |
4992 | |
4993 umfpack_di_report_info (control, info); | |
4994 | |
4995 umfpack_di_free_numeric (&Numeric); | |
4996 } | |
4997 } | |
4998 else if (typ != SparseType::Hermitian) | |
4999 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
5000 } | |
5001 | |
5002 return retval; | |
5003 } | |
5004 | |
5005 ComplexMatrix | |
5006 SparseMatrix::fsolve (SparseType &mattype, const ComplexMatrix& b, int& err, double& rcond, | |
5007 solve_singularity_handler sing_handler) const | |
5008 { | |
5009 ComplexMatrix retval; | |
5010 | |
5011 int nr = rows (); | |
5012 int nc = cols (); | |
5013 err = 0; | |
5014 | |
5015 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
5016 (*current_liboctave_error_handler) | |
5017 ("matrix dimension mismatch solution of linear equations"); | |
5018 else | |
5019 { | |
5020 // Print spparms("spumoni") info if requested | |
5021 int typ = mattype.type (); | |
5022 mattype.info (); | |
5023 | |
5024 if (typ == SparseType::Hermitian) | |
5025 { | |
5026 // XXX FIXME XXX Write the cholesky solver and only fall | |
5027 // through if cholesky factorization fails | |
5028 | |
5029 (*current_liboctave_warning_handler) | |
5030 ("SparseMatrix::solve XXX FIXME XXX Cholesky code not done"); | |
5031 | |
5032 mattype.mark_as_unsymmetric (); | |
5033 typ = SparseType::Full; | |
5034 } | |
5035 | |
5036 if (typ == SparseType::Full) | |
5037 { | |
5038 Matrix Control, Info; | |
5039 void *Numeric = factorize (err, rcond, Control, Info, | |
5040 sing_handler); | |
5041 | |
5042 if (err == 0) | |
5043 { | |
5044 int b_nr = b.rows (); | |
5045 int b_nc = b.cols (); | |
5046 int status = 0; | |
5047 double *control = Control.fortran_vec (); | |
5048 double *info = Info.fortran_vec (); | |
5049 const int *Ap = cidx (); | |
5050 const int *Ai = ridx (); | |
5051 const double *Ax = data (); | |
5052 | |
5053 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
5054 OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); | |
5055 | |
5056 retval.resize (b_nr, b_nc); | |
5057 | |
5058 OCTAVE_LOCAL_BUFFER (double, Xx, b_nr); | |
5059 OCTAVE_LOCAL_BUFFER (double, Xz, b_nr); | |
5060 | |
5061 for (int j = 0; j < b_nc; j++) | |
5062 { | |
5063 for (int i = 0; i < b_nr; i++) | |
5064 { | |
5065 Complex c = b (i,j); | |
5066 Bx[i] = ::real (c); | |
5067 Bz[i] = ::imag (c); | |
5068 } | |
5069 | |
5070 status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, | |
5071 Xx, Bx, Numeric, control, | |
5072 info); | |
5073 int status2 = umfpack_di_solve (UMFPACK_A, Ap, Ai, | |
5074 Ax, Xz, Bz, Numeric, | |
5075 control, info) ; | |
5076 | |
5077 if (status < 0 || status2 < 0) | |
5078 { | |
5079 (*current_liboctave_error_handler) | |
5080 ("SparseMatrix::solve solve failed"); | |
5081 | |
5082 umfpack_di_report_status (control, status); | |
5083 | |
5084 err = -1; | |
5085 | |
5086 break; | |
5087 } | |
5088 | |
5089 for (int i = 0; i < b_nr; i++) | |
5090 retval (i, j) = Complex (Xx[i], Xz[i]); | |
5091 } | |
5092 | |
5093 #ifndef HAVE_LSSOLVE | |
5094 rcond = Info (UMFPACK_RCOND); | |
5095 volatile double rcond_plus_one = rcond + 1.0; | |
5096 | |
5097 if (status == UMFPACK_WARNING_singular_matrix || | |
5098 rcond_plus_one == 1.0 || xisnan (rcond)) | |
5099 { | |
5100 err = -2; | |
5101 | |
5102 if (sing_handler) | |
5103 sing_handler (rcond); | |
5104 else | |
5105 (*current_liboctave_error_handler) | |
5106 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
5107 rcond); | |
5108 | |
5109 } | |
5110 #endif | |
5111 | |
5112 umfpack_di_report_info (control, info); | |
5113 | |
5114 umfpack_di_free_numeric (&Numeric); | |
5115 } | |
5116 } | |
5117 else if (typ != SparseType::Hermitian) | |
5118 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
5119 } | |
5120 | |
5121 return retval; | |
5122 } | |
5123 | |
5124 SparseComplexMatrix | |
5125 SparseMatrix::fsolve (SparseType &mattype, const SparseComplexMatrix& b, | |
5126 int& err, double& rcond, | |
5127 solve_singularity_handler sing_handler) const | |
5128 { | |
5129 SparseComplexMatrix retval; | |
5130 | |
5131 int nr = rows (); | |
5132 int nc = cols (); | |
5133 err = 0; | |
5134 | |
5135 if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ()) | |
5136 (*current_liboctave_error_handler) | |
5137 ("matrix dimension mismatch solution of linear equations"); | |
5138 else | |
5139 { | |
5140 // Print spparms("spumoni") info if requested | |
5141 int typ = mattype.type (); | |
5142 mattype.info (); | |
5143 | |
5144 if (typ == SparseType::Hermitian) | |
5145 { | |
5146 // XXX FIXME XXX Write the cholesky solver and only fall | |
5147 // through if cholesky factorization fails | |
5148 | |
5149 (*current_liboctave_warning_handler) | |
5150 ("SparseMatrix::solve XXX FIXME XXX Cholesky code not done"); | |
5151 | |
5152 mattype.mark_as_unsymmetric (); | |
5153 typ = SparseType::Full; | |
5154 } | |
5155 | |
5156 if (typ == SparseType::Full) | |
5157 { | |
5158 Matrix Control, Info; | |
5159 void *Numeric = factorize (err, rcond, Control, Info, | |
5160 sing_handler); | |
5161 | |
5162 if (err == 0) | |
5163 { | |
5164 int b_nr = b.rows (); | |
5165 int b_nc = b.cols (); | |
5166 int status = 0; | |
5167 double *control = Control.fortran_vec (); | |
5168 double *info = Info.fortran_vec (); | |
5169 const int *Ap = cidx (); | |
5170 const int *Ai = ridx (); | |
5171 const double *Ax = data (); | |
5172 | |
5173 OCTAVE_LOCAL_BUFFER (double, Bx, b_nr); | |
5174 OCTAVE_LOCAL_BUFFER (double, Bz, b_nr); | |
5175 | |
5176 // Take a first guess that the number of non-zero terms | |
5177 // will be as many as in b | |
5178 int x_nz = b.nnz (); | |
5179 int ii = 0; | |
5180 retval = SparseComplexMatrix (b_nr, b_nc, x_nz); | |
5181 | |
5182 OCTAVE_LOCAL_BUFFER (double, Xx, b_nr); | |
5183 OCTAVE_LOCAL_BUFFER (double, Xz, b_nr); | |
5184 | |
5185 retval.xcidx(0) = 0; | |
5186 for (int j = 0; j < b_nc; j++) | |
5187 { | |
5188 for (int i = 0; i < b_nr; i++) | |
5189 { | |
5190 Complex c = b (i,j); | |
5191 Bx[i] = ::real (c); | |
5192 Bz[i] = ::imag (c); | |
5193 } | |
5194 | |
5195 status = umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, Xx, | |
5196 Bx, Numeric, control, | |
5197 info); | |
5198 int status2 = umfpack_di_solve (UMFPACK_A, Ap, Ai, | |
5199 Ax, Xz, Bz, Numeric, | |
5200 control, info) ; | |
5201 | |
5202 if (status < 0 || status2 < 0) | |
5203 { | |
5204 (*current_liboctave_error_handler) | |
5205 ("SparseMatrix::solve solve failed"); | |
5206 | |
5207 umfpack_di_report_status (control, status); | |
5208 | |
5209 err = -1; | |
5210 | |
5211 break; | |
5212 } | |
5213 | |
5214 for (int i = 0; i < b_nr; i++) | |
5215 { | |
5216 Complex tmp = Complex (Xx[i], Xz[i]); | |
5217 if (tmp != 0.0) | |
5218 { | |
5219 if (ii == x_nz) | |
5220 { | |
5221 // Resize the sparse matrix | |
5222 int sz = x_nz * (b_nc - j) / b_nc; | |
5223 sz = (sz > 10 ? sz : 10) + x_nz; | |
5224 retval.change_capacity (sz); | |
5225 x_nz = sz; | |
5226 } | |
5227 retval.xdata(ii) = tmp; | |
5228 retval.xridx(ii++) = i; | |
5229 } | |
5230 } | |
5231 retval.xcidx(j+1) = ii; | |
5232 } | |
5233 | |
5234 retval.maybe_compress (); | |
5235 | |
5236 #ifndef HAVE_LSSOLVE | |
5237 rcond = Info (UMFPACK_RCOND); | |
5238 volatile double rcond_plus_one = rcond + 1.0; | |
5239 | |
5240 if (status == UMFPACK_WARNING_singular_matrix || | |
5241 rcond_plus_one == 1.0 || xisnan (rcond)) | |
5242 { | |
5243 err = -2; | |
5244 | |
5245 if (sing_handler) | |
5246 sing_handler (rcond); | |
5247 else | |
5248 (*current_liboctave_error_handler) | |
5249 ("SparseMatrix::solve matrix singular to machine precision, rcond = %g", | |
5250 rcond); | |
5251 | |
5252 } | |
5253 #endif | |
5254 | |
5255 umfpack_di_report_info (control, info); | |
5256 | |
5257 umfpack_di_free_numeric (&Numeric); | |
5258 } | |
5259 } | |
5260 else if (typ != SparseType::Hermitian) | |
5261 (*current_liboctave_error_handler) ("incorrect matrix type"); | |
5262 } | |
5263 | |
5264 return retval; | |
5265 } | |
5266 | |
5267 Matrix | |
5268 SparseMatrix::solve (SparseType &mattype, const Matrix& b) const | |
5269 { | |
5270 int info; | |
5271 double rcond; | |
5272 return solve (mattype, b, info, rcond, 0); | |
5273 } | |
5274 | |
5275 Matrix | |
5276 SparseMatrix::solve (SparseType &mattype, const Matrix& b, int& info) const | |
5277 { | |
5278 double rcond; | |
5279 return solve (mattype, b, info, rcond, 0); | |
5280 } | |
5281 | |
5282 Matrix | |
5283 SparseMatrix::solve (SparseType &mattype, const Matrix& b, int& info, | |
5284 double& rcond) const | |
5285 { | |
5286 return solve (mattype, b, info, rcond, 0); | |
5287 } | |
5288 | |
5289 Matrix | |
5290 SparseMatrix::solve (SparseType &mattype, const Matrix& b, int& err, | |
5291 double& rcond, | |
5292 solve_singularity_handler sing_handler) const | |
5293 { | |
5294 int typ = mattype.type (); | |
5295 | |
5296 if (typ == SparseType::Unknown) | |
5297 typ = mattype.type (*this); | |
5298 | |
5299 if (typ == SparseType::Diagonal || typ == SparseType::Permuted_Diagonal) | |
5300 return dsolve (mattype, b, err, rcond, sing_handler); | |
5301 else if (typ == SparseType::Upper || typ == SparseType::Permuted_Upper) | |
5302 return utsolve (mattype, b, err, rcond, sing_handler); | |
5303 else if (typ == SparseType::Lower || typ == SparseType::Permuted_Lower) | |
5304 return ltsolve (mattype, b, err, rcond, sing_handler); | |
5305 else if (typ == SparseType::Banded || typ == SparseType::Banded_Hermitian) | |
5306 return bsolve (mattype, b, err, rcond, sing_handler); | |
5307 else if (typ == SparseType::Tridiagonal || | |
5308 typ == SparseType::Tridiagonal_Hermitian) | |
5309 return trisolve (mattype, b, err, rcond, sing_handler); | |
5310 else if (typ == SparseType::Full || typ == SparseType::Hermitian) | |
5311 return fsolve (mattype, b, err, rcond, sing_handler); | |
5312 else | |
5313 { | |
5314 (*current_liboctave_error_handler) | |
5315 ("matrix dimension mismatch solution of linear equations"); | |
5316 return Matrix (); | |
5317 } | |
5318 } | |
5319 | |
5320 SparseMatrix | |
5321 SparseMatrix::solve (SparseType &mattype, const SparseMatrix& b) const | |
5322 { | |
5323 int info; | |
5324 double rcond; | |
5325 return solve (mattype, b, info, rcond, 0); | |
5326 } | |
5327 | |
5328 SparseMatrix | |
5329 SparseMatrix::solve (SparseType &mattype, const SparseMatrix& b, | |
5330 int& info) const | |
5331 { | |
5332 double rcond; | |
5333 return solve (mattype, b, info, rcond, 0); | |
5334 } | |
5335 | |
5336 SparseMatrix | |
5337 SparseMatrix::solve (SparseType &mattype, const SparseMatrix& b, | |
5338 int& info, double& rcond) const | |
5339 { | |
5340 return solve (mattype, b, info, rcond, 0); | |
5341 } | |
5342 | |
5343 SparseMatrix | |
5344 SparseMatrix::solve (SparseType &mattype, const SparseMatrix& b, | |
5345 int& err, double& rcond, | |
5346 solve_singularity_handler sing_handler) const | |
5347 { | |
5348 int typ = mattype.type (); | |
5349 | |
5350 if (typ == SparseType::Unknown) | |
5351 typ = mattype.type (*this); | |
5352 | |
5353 if (typ == SparseType::Diagonal || typ == SparseType::Permuted_Diagonal) | |
5354 return dsolve (mattype, b, err, rcond, sing_handler); | |
5355 else if (typ == SparseType::Upper || typ == SparseType::Permuted_Upper) | |
5356 return utsolve (mattype, b, err, rcond, sing_handler); | |
5357 else if (typ == SparseType::Lower || typ == SparseType::Permuted_Lower) | |
5358 return ltsolve (mattype, b, err, rcond, sing_handler); | |
5359 else if (typ == SparseType::Banded || typ == SparseType::Banded_Hermitian) | |
5360 return bsolve (mattype, b, err, rcond, sing_handler); | |
5361 else if (typ == SparseType::Tridiagonal || | |
5362 typ == SparseType::Tridiagonal_Hermitian) | |
5363 return trisolve (mattype, b, err, rcond, sing_handler); | |
5364 else if (typ == SparseType::Full || typ == SparseType::Hermitian) | |
5365 return fsolve (mattype, b, err, rcond, sing_handler); | |
5366 else | |
5367 { | |
5368 (*current_liboctave_error_handler) | |
5369 ("matrix dimension mismatch solution of linear equations"); | |
5370 return SparseMatrix (); | |
5371 } | |
5372 } | |
5373 | |
5374 ComplexMatrix | |
5375 SparseMatrix::solve (SparseType &mattype, const ComplexMatrix& b) const | |
5376 { | |
5377 int info; | |
5378 double rcond; | |
5379 return solve (mattype, b, info, rcond, 0); | |
5380 } | |
5381 | |
5382 ComplexMatrix | |
5383 SparseMatrix::solve (SparseType &mattype, const ComplexMatrix& b, | |
5384 int& info) const | |
5385 { | |
5386 double rcond; | |
5387 return solve (mattype, b, info, rcond, 0); | |
5388 } | |
5389 | |
5390 ComplexMatrix | |
5391 SparseMatrix::solve (SparseType &mattype, const ComplexMatrix& b, | |
5392 int& info, double& rcond) const | |
5393 { | |
5394 return solve (mattype, b, info, rcond, 0); | |
5395 } | |
5396 | |
5397 ComplexMatrix | |
5398 SparseMatrix::solve (SparseType &mattype, const ComplexMatrix& b, | |
5399 int& err, double& rcond, | |
5400 solve_singularity_handler sing_handler) const | |
5401 { | |
5402 int typ = mattype.type (); | |
5403 | |
5404 if (typ == SparseType::Unknown) | |
5405 typ = mattype.type (*this); | |
5406 | |
5407 if (typ == SparseType::Diagonal || typ == SparseType::Permuted_Diagonal) | |
5408 return dsolve (mattype, b, err, rcond, sing_handler); | |
5409 else if (typ == SparseType::Upper || typ == SparseType::Permuted_Upper) | |
5410 return utsolve (mattype, b, err, rcond, sing_handler); | |
5411 else if (typ == SparseType::Lower || typ == SparseType::Permuted_Lower) | |
5412 return ltsolve (mattype, b, err, rcond, sing_handler); | |
5413 else if (typ == SparseType::Banded || typ == SparseType::Banded_Hermitian) | |
5414 return bsolve (mattype, b, err, rcond, sing_handler); | |
5415 else if (typ == SparseType::Tridiagonal || | |
5416 typ == SparseType::Tridiagonal_Hermitian) | |
5417 return trisolve (mattype, b, err, rcond, sing_handler); | |
5418 else if (typ == SparseType::Full || typ == SparseType::Hermitian) | |
5419 return fsolve (mattype, b, err, rcond, sing_handler); | |
5420 else | |
5421 { | |
5422 (*current_liboctave_error_handler) | |
5423 ("matrix dimension mismatch solution of linear equations"); | |
5424 return ComplexMatrix (); | |
5425 } | |
5426 } | |
5427 | |
5428 SparseComplexMatrix | |
5429 SparseMatrix::solve (SparseType &mattype, const SparseComplexMatrix& b) const | |
5430 { | |
5431 int info; | |
5432 double rcond; | |
5433 return solve (mattype, b, info, rcond, 0); | |
5434 } | |
5435 | |
5436 SparseComplexMatrix | |
5437 SparseMatrix::solve (SparseType &mattype, const SparseComplexMatrix& b, | |
5438 int& info) const | |
5439 { | |
5440 double rcond; | |
5441 return solve (mattype, b, info, rcond, 0); | |
5442 } | |
5443 | |
5444 SparseComplexMatrix | |
5445 SparseMatrix::solve (SparseType &mattype, const SparseComplexMatrix& b, | |
5446 int& info, double& rcond) const | |
5447 { | |
5448 return solve (mattype, b, info, rcond, 0); | |
5449 } | |
5450 | |
5451 SparseComplexMatrix | |
5452 SparseMatrix::solve (SparseType &mattype, const SparseComplexMatrix& b, | |
5453 int& err, double& rcond, | |
5454 solve_singularity_handler sing_handler) const | |
5455 { | |
5456 int typ = mattype.type (); | |
5457 | |
5458 if (typ == SparseType::Unknown) | |
5459 typ = mattype.type (*this); | |
5460 | |
5461 if (typ == SparseType::Diagonal || typ == SparseType::Permuted_Diagonal) | |
5462 return dsolve (mattype, b, err, rcond, sing_handler); | |
5463 else if (typ == SparseType::Upper || typ == SparseType::Permuted_Upper) | |
5464 return utsolve (mattype, b, err, rcond, sing_handler); | |
5465 else if (typ == SparseType::Lower || typ == SparseType::Permuted_Lower) | |
5466 return ltsolve (mattype, b, err, rcond, sing_handler); | |
5467 else if (typ == SparseType::Banded || typ == SparseType::Banded_Hermitian) | |
5468 return bsolve (mattype, b, err, rcond, sing_handler); | |
5469 else if (typ == SparseType::Tridiagonal || | |
5470 typ == SparseType::Tridiagonal_Hermitian) | |
5471 return trisolve (mattype, b, err, rcond, sing_handler); | |
5472 else if (typ == SparseType::Full || typ == SparseType::Hermitian) | |
5473 return fsolve (mattype, b, err, rcond, sing_handler); | |
5474 else | |
5475 { | |
5476 (*current_liboctave_error_handler) | |
5477 ("matrix dimension mismatch solution of linear equations"); | |
5478 return SparseComplexMatrix (); | |
5479 } | |
5480 } | |
5481 | |
5482 ColumnVector | |
5483 SparseMatrix::solve (SparseType &mattype, const ColumnVector& b) const | |
5484 { | |
5485 int info; double rcond; | |
5486 return solve (mattype, b, info, rcond); | |
5487 } | |
5488 | |
5489 ColumnVector | |
5490 SparseMatrix::solve (SparseType &mattype, const ColumnVector& b, int& info) const | |
5491 { | |
5492 double rcond; | |
5493 return solve (mattype, b, info, rcond); | |
5494 } | |
5495 | |
5496 ColumnVector | |
5497 SparseMatrix::solve (SparseType &mattype, const ColumnVector& b, int& info, double& rcond) const | |
5498 { | |
5499 return solve (mattype, b, info, rcond, 0); | |
5500 } | |
5501 | |
5502 ColumnVector | |
5503 SparseMatrix::solve (SparseType &mattype, const ColumnVector& b, int& info, double& rcond, | |
5504 solve_singularity_handler sing_handler) const | |
5505 { | |
5506 Matrix tmp (b); | |
5507 return solve (mattype, tmp, info, rcond, sing_handler).column (0); | |
5508 } | |
5509 | |
5510 ComplexColumnVector | |
5511 SparseMatrix::solve (SparseType &mattype, const ComplexColumnVector& b) const | |
5512 { | |
5513 int info; | |
5514 double rcond; | |
5515 return solve (mattype, b, info, rcond, 0); | |
5516 } | |
5517 | |
5518 ComplexColumnVector | |
5519 SparseMatrix::solve (SparseType &mattype, const ComplexColumnVector& b, int& info) const | |
5520 { | |
5521 double rcond; | |
5522 return solve (mattype, b, info, rcond, 0); | |
5523 } | |
5524 | |
5525 ComplexColumnVector | |
5526 SparseMatrix::solve (SparseType &mattype, const ComplexColumnVector& b, int& info, | |
5527 double& rcond) const | |
5528 { | |
5529 return solve (mattype, b, info, rcond, 0); | |
5530 } | |
5531 | |
5532 ComplexColumnVector | |
5533 SparseMatrix::solve (SparseType &mattype, const ComplexColumnVector& b, int& info, double& rcond, | |
5534 solve_singularity_handler sing_handler) const | |
5535 { | |
5536 ComplexMatrix tmp (b); | |
5537 return solve (mattype, tmp, info, rcond, sing_handler).column (0); | |
5538 } | |
5539 | |
5540 Matrix | |
5541 SparseMatrix::solve (const Matrix& b) const | |
5542 { | |
5543 int info; | |
5544 double rcond; | |
5545 return solve (b, info, rcond, 0); | |
5546 } | |
5547 | |
5548 Matrix | |
5549 SparseMatrix::solve (const Matrix& b, int& info) const | |
5550 { | |
5551 double rcond; | |
5552 return solve (b, info, rcond, 0); | |
5553 } | |
5554 | |
5555 Matrix | |
5556 SparseMatrix::solve (const Matrix& b, int& info, | |
5557 double& rcond) const | |
5558 { | |
5559 return solve (b, info, rcond, 0); | |
5560 } | |
5561 | |
5562 Matrix | |
5563 SparseMatrix::solve (const Matrix& b, int& err, | |
5564 double& rcond, | |
5565 solve_singularity_handler sing_handler) const | |
5566 { | |
5567 SparseType mattype (*this); | |
5568 return solve (mattype, b, err, rcond, sing_handler); | |
5569 } | |
5570 | |
5571 SparseMatrix | |
5572 SparseMatrix::solve (const SparseMatrix& b) const | |
5573 { | |
5574 int info; | |
5575 double rcond; | |
5576 return solve (b, info, rcond, 0); | |
5577 } | |
5578 | |
5579 SparseMatrix | |
5580 SparseMatrix::solve (const SparseMatrix& b, | |
5581 int& info) const | |
5582 { | |
5583 double rcond; | |
5584 return solve (b, info, rcond, 0); | |
5585 } | |
5586 | |
5587 SparseMatrix | |
5588 SparseMatrix::solve (const SparseMatrix& b, | |
5589 int& info, double& rcond) const | |
5590 { | |
5591 return solve (b, info, rcond, 0); | |
5592 } | |
5593 | |
5594 SparseMatrix | |
5595 SparseMatrix::solve (const SparseMatrix& b, | |
5596 int& err, double& rcond, | |
5597 solve_singularity_handler sing_handler) const | |
5598 { | |
5599 SparseType mattype (*this); | |
5600 return solve (mattype, b, err, rcond, sing_handler); | |
5601 } | |
5602 | |
5603 ComplexMatrix | |
5604 SparseMatrix::solve (const ComplexMatrix& b, | |
5605 int& info) const | |
5606 { | |
5607 double rcond; | |
5608 return solve (b, info, rcond, 0); | |
5609 } | |
5610 | |
5611 ComplexMatrix | |
5612 SparseMatrix::solve (const ComplexMatrix& b, | |
5613 int& info, double& rcond) const | |
5614 { | |
5615 return solve (b, info, rcond, 0); | |
5616 } | |
5617 | |
5618 ComplexMatrix | |
5619 SparseMatrix::solve (const ComplexMatrix& b, | |
5620 int& err, double& rcond, | |
5621 solve_singularity_handler sing_handler) const | |
5622 { | |
5623 SparseType mattype (*this); | |
5624 return solve (mattype, b, err, rcond, sing_handler); | |
5625 } | |
5626 | |
5627 SparseComplexMatrix | |
5628 SparseMatrix::solve (const SparseComplexMatrix& b) const | |
5629 { | |
5630 int info; | |
5631 double rcond; | |
5632 return solve (b, info, rcond, 0); | |
5633 } | |
5634 | |
5635 SparseComplexMatrix | |
5636 SparseMatrix::solve (const SparseComplexMatrix& b, | |
5637 int& info) const | |
5638 { | |
5639 double rcond; | |
5640 return solve (b, info, rcond, 0); | |
5641 } | |
5642 | |
5643 SparseComplexMatrix | |
5644 SparseMatrix::solve (const SparseComplexMatrix& b, | |
5645 int& info, double& rcond) const | |
5646 { | |
5647 return solve (b, info, rcond, 0); | |
5648 } | |
5649 | |
5650 SparseComplexMatrix | |
5651 SparseMatrix::solve (const SparseComplexMatrix& b, | |
5652 int& err, double& rcond, | |
5653 solve_singularity_handler sing_handler) const | |
5654 { | |
5655 SparseType mattype (*this); | |
5656 return solve (mattype, b, err, rcond, sing_handler); | |
5657 } | |
5658 | |
5659 ColumnVector | |
5660 SparseMatrix::solve (const ColumnVector& b) const | |
5661 { | |
5662 int info; double rcond; | |
5663 return solve (b, info, rcond); | |
5664 } | |
5665 | |
5666 ColumnVector | |
5667 SparseMatrix::solve (const ColumnVector& b, int& info) const | |
5668 { | |
5669 double rcond; | |
5670 return solve (b, info, rcond); | |
5671 } | |
5672 | |
5673 ColumnVector | |
5674 SparseMatrix::solve (const ColumnVector& b, int& info, double& rcond) const | |
5675 { | |
5676 return solve (b, info, rcond, 0); | |
5677 } | |
5678 | |
5679 ColumnVector | |
5680 SparseMatrix::solve (const ColumnVector& b, int& info, double& rcond, | |
5681 solve_singularity_handler sing_handler) const | |
5682 { | |
5683 Matrix tmp (b); | |
5684 return solve (tmp, info, rcond, sing_handler).column (0); | |
5685 } | |
5686 | |
5687 ComplexColumnVector | |
5688 SparseMatrix::solve (const ComplexColumnVector& b) const | |
5689 { | |
5690 int info; | |
5691 double rcond; | |
5692 return solve (b, info, rcond, 0); | |
5693 } | |
5694 | |
5695 ComplexColumnVector | |
5696 SparseMatrix::solve (const ComplexColumnVector& b, int& info) const | |
5697 { | |
5698 double rcond; | |
5699 return solve (b, info, rcond, 0); | |
5700 } | |
5701 | |
5702 ComplexColumnVector | |
5703 SparseMatrix::solve (const ComplexColumnVector& b, int& info, | |
5704 double& rcond) const | |
5705 { | |
5706 return solve (b, info, rcond, 0); | |
5707 } | |
5708 | |
5709 ComplexColumnVector | |
5710 SparseMatrix::solve (const ComplexColumnVector& b, int& info, double& rcond, | |
5711 solve_singularity_handler sing_handler) const | |
5712 { | |
5713 ComplexMatrix tmp (b); | |
5714 return solve (tmp, info, rcond, sing_handler).column (0); | |
5715 } | |
5716 | |
5717 Matrix | |
5718 SparseMatrix::lssolve (const Matrix& b) const | |
5719 { | |
5720 int info; | |
5721 int rank; | |
5722 return lssolve (b, info, rank); | |
5723 } | |
5724 | |
5725 Matrix | |
5726 SparseMatrix::lssolve (const Matrix& b, int& info) const | |
5727 { | |
5728 int rank; | |
5729 return lssolve (b, info, rank); | |
5730 } | |
5731 | |
5732 Matrix | |
5733 SparseMatrix::lssolve (const Matrix& b, int& info, int& rank) const | |
5734 { | |
5735 info = -1; | |
5736 (*current_liboctave_error_handler) | |
5737 ("SparseMatrix::lssolve not implemented yet"); | |
5738 return Matrix (); | |
5739 } | |
5740 | |
5741 SparseMatrix | |
5742 SparseMatrix::lssolve (const SparseMatrix& b) const | |
5743 { | |
5744 int info; | |
5745 int rank; | |
5746 return lssolve (b, info, rank); | |
5747 } | |
5748 | |
5749 SparseMatrix | |
5750 SparseMatrix::lssolve (const SparseMatrix& b, int& info) const | |
5751 { | |
5752 int rank; | |
5753 return lssolve (b, info, rank); | |
5754 } | |
5755 | |
5756 SparseMatrix | |
5757 SparseMatrix::lssolve (const SparseMatrix& b, int& info, int& rank) const | |
5758 { | |
5759 info = -1; | |
5760 (*current_liboctave_error_handler) | |
5761 ("SparseMatrix::lssolve not implemented yet"); | |
5762 return SparseMatrix (); | |
5763 } | |
5764 | |
5765 ComplexMatrix | |
5766 SparseMatrix::lssolve (const ComplexMatrix& b) const | |
5767 { | |
5768 int info; | |
5769 int rank; | |
5770 return lssolve (b, info, rank); | |
5771 } | |
5772 | |
5773 ComplexMatrix | |
5774 SparseMatrix::lssolve (const ComplexMatrix& b, int& info) const | |
5775 { | |
5776 int rank; | |
5777 return lssolve (b, info, rank); | |
5778 } | |
5779 | |
5780 ComplexMatrix | |
5781 SparseMatrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const | |
5782 { | |
5783 info = -1; | |
5784 (*current_liboctave_error_handler) | |
5785 ("SparseMatrix::lssolve not implemented yet"); | |
5786 return ComplexMatrix (); | |
5787 } | |
5788 | |
5789 SparseComplexMatrix | |
5790 SparseMatrix::lssolve (const SparseComplexMatrix& b) const | |
5791 { | |
5792 int info; | |
5793 int rank; | |
5794 return lssolve (b, info, rank); | |
5795 } | |
5796 | |
5797 SparseComplexMatrix | |
5798 SparseMatrix::lssolve (const SparseComplexMatrix& b, int& info) const | |
5799 { | |
5800 int rank; | |
5801 return lssolve (b, info, rank); | |
5802 } | |
5803 | |
5804 SparseComplexMatrix | |
5805 SparseMatrix::lssolve (const SparseComplexMatrix& b, int& info, | |
5806 int& rank) const | |
5807 { | |
5808 info = -1; | |
5809 (*current_liboctave_error_handler) | |
5810 ("SparseMatrix::lssolve not implemented yet"); | |
5811 return SparseComplexMatrix (); | |
5812 } | |
5813 | |
5814 ColumnVector | |
5815 SparseMatrix::lssolve (const ColumnVector& b) const | |
5816 { | |
5817 int info; | |
5818 int rank; | |
5819 return lssolve (b, info, rank); | |
5820 } | |
5821 | |
5822 ColumnVector | |
5823 SparseMatrix::lssolve (const ColumnVector& b, int& info) const | |
5824 { | |
5825 int rank; | |
5826 return lssolve (b, info, rank); | |
5827 } | |
5828 | |
5829 ColumnVector | |
5830 SparseMatrix::lssolve (const ColumnVector& b, int& info, int& rank) const | |
5831 { | |
5832 Matrix tmp (b); | |
5833 return lssolve (tmp, info, rank).column (0); | |
5834 } | |
5835 | |
5836 ComplexColumnVector | |
5837 SparseMatrix::lssolve (const ComplexColumnVector& b) const | |
5838 { | |
5839 int info; | |
5840 int rank; | |
5841 return lssolve (b, info, rank); | |
5842 } | |
5843 | |
5844 ComplexColumnVector | |
5845 SparseMatrix::lssolve (const ComplexColumnVector& b, int& info) const | |
5846 { | |
5847 int rank; | |
5848 return lssolve (b, info, rank); | |
5849 } | |
5850 | |
5851 ComplexColumnVector | |
5852 SparseMatrix::lssolve (const ComplexColumnVector& b, int& info, | |
5853 int& rank) const | |
5854 { | |
5855 ComplexMatrix tmp (b); | |
5856 return lssolve (tmp, info, rank).column (0); | |
5857 } | |
5858 | |
5859 // other operations. | |
5860 | |
5861 SparseMatrix | |
5862 SparseMatrix::map (d_d_Mapper f) const | |
5863 { | |
5864 int nr = rows (); | |
5865 int nc = cols (); | |
5866 int nz = nnz (); | |
5867 bool f_zero = (f(0.0) == 0.0); | |
5868 | |
5869 // Count number of non-zero elements | |
5870 int nel = (f_zero ? 0 : nr*nc - nz); | |
5871 for (int i = 0; i < nz; i++) | |
5872 if (f (data(i)) != 0.0) | |
5873 nel++; | |
5874 | |
5875 SparseMatrix retval (nr, nc, nel); | |
5876 | |
5877 if (f_zero) | |
5878 { | |
5879 int ii = 0; | |
5880 for (int j = 0; j < nc; j++) | |
5881 { | |
5882 for (int i = 0; i < nr; i++) | |
5883 { | |
5884 double tmp = f (elem (i, j)); | |
5885 if (tmp != 0.0) | |
5886 { | |
5887 retval.data(ii) = tmp; | |
5888 retval.ridx(ii++) = i; | |
5889 } | |
5890 } | |
5891 retval.cidx(j+1) = ii; | |
5892 } | |
5893 } | |
5894 else | |
5895 { | |
5896 int ii = 0; | |
5897 for (int j = 0; j < nc; j++) | |
5898 { | |
5899 for (int i = cidx(j); i < cidx(j+1); i++) | |
5900 { | |
5901 retval.data(ii) = f (elem(i)); | |
5902 retval.ridx(ii++) = ridx(i); | |
5903 } | |
5904 retval.cidx(j+1) = ii; | |
5905 } | |
5906 } | |
5907 | |
5908 return retval; | |
5909 } | |
5910 | |
5911 SparseBoolMatrix | |
5912 SparseMatrix::map (b_d_Mapper f) const | |
5913 { | |
5914 int nr = rows (); | |
5915 int nc = cols (); | |
5916 int nz = nnz (); | |
5917 bool f_zero = f(0.0); | |
5918 | |
5919 // Count number of non-zero elements | |
5920 int nel = (f_zero ? 0 : nr*nc - nz); | |
5921 for (int i = 0; i < nz; i++) | |
5922 if (f (data(i)) != 0.0) | |
5923 nel++; | |
5924 | |
5925 SparseBoolMatrix retval (nr, nc, nel); | |
5926 | |
5927 if (f_zero) | |
5928 { | |
5929 int ii = 0; | |
5930 for (int j = 0; j < nc; j++) | |
5931 { | |
5932 for (int i = 0; i < nr; i++) | |
5933 { | |
5934 bool tmp = f (elem (i, j)); | |
5935 if (tmp) | |
5936 { | |
5937 retval.data(ii) = tmp; | |
5938 retval.ridx(ii++) = i; | |
5939 } | |
5940 } | |
5941 retval.cidx(j+1) = ii; | |
5942 } | |
5943 } | |
5944 else | |
5945 { | |
5946 int ii = 0; | |
5947 for (int j = 0; j < nc; j++) | |
5948 { | |
5949 for (int i = cidx(j); i < cidx(j+1); i++) | |
5950 { | |
5951 retval.data(ii) = f (elem(i)); | |
5952 retval.ridx(ii++) = ridx(i); | |
5953 } | |
5954 retval.cidx(j+1) = ii; | |
5955 } | |
5956 } | |
5957 | |
5958 return retval; | |
5959 } | |
5960 | |
5961 SparseMatrix& | |
5962 SparseMatrix::apply (d_d_Mapper f) | |
5963 { | |
5964 *this = map (f); | |
5965 return *this; | |
5966 } | |
5967 | |
5968 bool | |
5969 SparseMatrix::any_element_is_negative (bool neg_zero) const | |
5970 { | |
5971 int nel = nnz (); | |
5972 | |
5973 if (neg_zero) | |
5974 { | |
5975 for (int i = 0; i < nel; i++) | |
5976 if (lo_ieee_signbit (data (i))) | |
5977 return true; | |
5978 } | |
5979 else | |
5980 { | |
5981 for (int i = 0; i < nel; i++) | |
5982 if (data (i) < 0) | |
5983 return true; | |
5984 } | |
5985 | |
5986 return false; | |
5987 } | |
5988 | |
5989 bool | |
5990 SparseMatrix::any_element_is_inf_or_nan (void) const | |
5991 { | |
5992 int nel = nnz (); | |
5993 | |
5994 for (int i = 0; i < nel; i++) | |
5995 { | |
5996 double val = data (i); | |
5997 if (xisinf (val) || xisnan (val)) | |
5998 return true; | |
5999 } | |
6000 | |
6001 return false; | |
6002 } | |
6003 | |
6004 bool | |
6005 SparseMatrix::all_elements_are_int_or_inf_or_nan (void) const | |
6006 { | |
6007 int nel = nnz (); | |
6008 | |
6009 for (int i = 0; i < nel; i++) | |
6010 { | |
6011 double val = data (i); | |
6012 if (xisnan (val) || D_NINT (val) == val) | |
6013 continue; | |
6014 else | |
6015 return false; | |
6016 } | |
6017 | |
6018 return true; | |
6019 } | |
6020 | |
6021 // Return nonzero if any element of M is not an integer. Also extract | |
6022 // the largest and smallest values and return them in MAX_VAL and MIN_VAL. | |
6023 | |
6024 bool | |
6025 SparseMatrix::all_integers (double& max_val, double& min_val) const | |
6026 { | |
6027 int nel = nnz (); | |
6028 | |
6029 if (nel == 0) | |
6030 return false; | |
6031 | |
6032 max_val = data (0); | |
6033 min_val = data (0); | |
6034 | |
6035 for (int i = 0; i < nel; i++) | |
6036 { | |
6037 double val = data (i); | |
6038 | |
6039 if (val > max_val) | |
6040 max_val = val; | |
6041 | |
6042 if (val < min_val) | |
6043 min_val = val; | |
6044 | |
6045 if (D_NINT (val) != val) | |
6046 return false; | |
6047 } | |
6048 | |
6049 return true; | |
6050 } | |
6051 | |
6052 bool | |
6053 SparseMatrix::too_large_for_float (void) const | |
6054 { | |
6055 int nel = nnz (); | |
6056 | |
6057 for (int i = 0; i < nel; i++) | |
6058 { | |
6059 double val = data (i); | |
6060 | |
6061 if (val > FLT_MAX || val < FLT_MIN) | |
6062 return true; | |
6063 } | |
6064 | |
6065 return false; | |
6066 } | |
6067 | |
6068 SparseBoolMatrix | |
6069 SparseMatrix::operator ! (void) const | |
6070 { | |
6071 int nr = rows (); | |
6072 int nc = cols (); | |
6073 int nz1 = nnz (); | |
6074 int nz2 = nr*nc - nz1; | |
6075 | |
6076 SparseBoolMatrix r (nr, nc, nz2); | |
6077 | |
6078 int ii = 0; | |
6079 int jj = 0; | |
6080 r.cidx (0) = 0; | |
6081 for (int i = 0; i < nc; i++) | |
6082 { | |
6083 for (int j = 0; j < nr; j++) | |
6084 { | |
6085 if (jj < cidx(i+1) && ridx(jj) == j) | |
6086 jj++; | |
6087 else | |
6088 { | |
6089 r.data(ii) = true; | |
6090 r.ridx(ii++) = j; | |
6091 } | |
6092 } | |
6093 r.cidx (i+1) = ii; | |
6094 } | |
6095 | |
6096 return r; | |
6097 } | |
6098 | |
6099 // XXX FIXME XXX Do these really belong here? Maybe they should be | |
6100 // in a base class? | |
6101 | |
6102 SparseBoolMatrix | |
6103 SparseMatrix::all (int dim) const | |
6104 { | |
6105 SPARSE_ALL_OP (dim); | |
6106 } | |
6107 | |
6108 SparseBoolMatrix | |
6109 SparseMatrix::any (int dim) const | |
6110 { | |
6111 SPARSE_ANY_OP (dim); | |
6112 } | |
6113 | |
6114 SparseMatrix | |
6115 SparseMatrix::cumprod (int dim) const | |
6116 { | |
6117 SPARSE_CUMPROD (SparseMatrix, double, cumprod); | |
6118 } | |
6119 | |
6120 SparseMatrix | |
6121 SparseMatrix::cumsum (int dim) const | |
6122 { | |
6123 SPARSE_CUMSUM (SparseMatrix, double, cumsum); | |
6124 } | |
6125 | |
6126 SparseMatrix | |
6127 SparseMatrix::prod (int dim) const | |
6128 { | |
6129 SPARSE_REDUCTION_OP (SparseMatrix, double, *=, 1.0, 1.0); | |
6130 } | |
6131 | |
6132 SparseMatrix | |
6133 SparseMatrix::sum (int dim) const | |
6134 { | |
6135 SPARSE_REDUCTION_OP (SparseMatrix, double, +=, 0.0, 0.0); | |
6136 } | |
6137 | |
6138 SparseMatrix | |
6139 SparseMatrix::sumsq (int dim) const | |
6140 { | |
6141 #define ROW_EXPR \ | |
6142 double d = elem (i, j); \ | |
6143 tmp[i] += d * d | |
6144 | |
6145 #define COL_EXPR \ | |
6146 double d = elem (i, j); \ | |
6147 tmp[j] += d * d | |
6148 | |
6149 SPARSE_BASE_REDUCTION_OP (SparseMatrix, double, ROW_EXPR, COL_EXPR, | |
6150 0.0, 0.0); | |
6151 | |
6152 #undef ROW_EXPR | |
6153 #undef COL_EXPR | |
6154 } | |
6155 | |
6156 SparseMatrix | |
6157 SparseMatrix::abs (void) const | |
6158 { | |
6159 int nz = nnz (); | |
6160 | |
6161 SparseMatrix retval (*this); | |
6162 | |
6163 for (int i = 0; i < nz; i++) | |
6164 retval.data(i) = fabs(retval.data(i)); | |
6165 | |
6166 return retval; | |
6167 } | |
6168 | |
6169 SparseMatrix | |
6170 SparseMatrix::diag (int k) const | |
6171 { | |
6172 int nnr = rows (); | |
6173 int nnc = cols (); | |
6174 | |
6175 if (k > 0) | |
6176 nnc -= k; | |
6177 else if (k < 0) | |
6178 nnr += k; | |
6179 | |
6180 SparseMatrix d; | |
6181 | |
6182 if (nnr > 0 && nnc > 0) | |
6183 { | |
6184 int ndiag = (nnr < nnc) ? nnr : nnc; | |
6185 | |
6186 // Count the number of non-zero elements | |
6187 int nel = 0; | |
6188 if (k > 0) | |
6189 { | |
6190 for (int i = 0; i < ndiag; i++) | |
6191 if (elem (i, i+k) != 0.) | |
6192 nel++; | |
6193 } | |
6194 else if ( k < 0) | |
6195 { | |
6196 for (int i = 0; i < ndiag; i++) | |
6197 if (elem (i-k, i) != 0.) | |
6198 nel++; | |
6199 } | |
6200 else | |
6201 { | |
6202 for (int i = 0; i < ndiag; i++) | |
6203 if (elem (i, i) != 0.) | |
6204 nel++; | |
6205 } | |
6206 | |
6207 d = SparseMatrix (ndiag, 1, nel); | |
6208 d.xcidx (0) = 0; | |
6209 d.xcidx (1) = nel; | |
6210 | |
6211 int ii = 0; | |
6212 if (k > 0) | |
6213 { | |
6214 for (int i = 0; i < ndiag; i++) | |
6215 { | |
6216 double tmp = elem (i, i+k); | |
6217 if (tmp != 0.) | |
6218 { | |
6219 d.xdata (ii) = tmp; | |
6220 d.xridx (ii++) = i; | |
6221 } | |
6222 } | |
6223 } | |
6224 else if ( k < 0) | |
6225 { | |
6226 for (int i = 0; i < ndiag; i++) | |
6227 { | |
6228 double tmp = elem (i-k, i); | |
6229 if (tmp != 0.) | |
6230 { | |
6231 d.xdata (ii) = tmp; | |
6232 d.xridx (ii++) = i; | |
6233 } | |
6234 } | |
6235 } | |
6236 else | |
6237 { | |
6238 for (int i = 0; i < ndiag; i++) | |
6239 { | |
6240 double tmp = elem (i, i); | |
6241 if (tmp != 0.) | |
6242 { | |
6243 d.xdata (ii) = tmp; | |
6244 d.xridx (ii++) = i; | |
6245 } | |
6246 } | |
6247 } | |
6248 } | |
6249 else | |
6250 (*current_liboctave_error_handler) | |
6251 ("diag: requested diagonal out of range"); | |
6252 | |
6253 return d; | |
6254 } | |
6255 | |
6256 Matrix | |
6257 SparseMatrix::matrix_value (void) const | |
6258 { | |
6259 int nr = rows (); | |
6260 int nc = cols (); | |
6261 | |
6262 Matrix retval (nr, nc, 0.0); | |
6263 for (int j = 0; j < nc; j++) | |
6264 for (int i = cidx(j); i < cidx(j+1); i++) | |
6265 retval.elem (ridx(i), j) = data (i); | |
6266 | |
6267 return retval; | |
6268 } | |
6269 | |
6270 std::ostream& | |
6271 operator << (std::ostream& os, const SparseMatrix& a) | |
6272 { | |
6273 int nc = a.cols (); | |
6274 | |
6275 // add one to the printed indices to go from | |
6276 // zero-based to one-based arrays | |
6277 for (int j = 0; j < nc; j++) { | |
6278 OCTAVE_QUIT; | |
6279 for (int i = a.cidx(j); i < a.cidx(j+1); i++) { | |
6280 os << a.ridx(i) + 1 << " " << j + 1 << " "; | |
6281 octave_write_double (os, a.data(i)); | |
6282 os << "\n"; | |
6283 } | |
6284 } | |
6285 | |
6286 return os; | |
6287 } | |
6288 | |
6289 std::istream& | |
6290 operator >> (std::istream& is, SparseMatrix& a) | |
6291 { | |
6292 int nr = a.rows (); | |
6293 int nc = a.cols (); | |
6294 int nz = a.nnz (); | |
6295 | |
6296 if (nr < 1 || nc < 1) | |
6297 is.clear (std::ios::badbit); | |
6298 else | |
6299 { | |
6300 int itmp, jtmp, jold = 0; | |
6301 double tmp; | |
6302 int ii = 0; | |
6303 | |
6304 a.cidx (0) = 0; | |
6305 for (int i = 0; i < nz; i++) | |
6306 { | |
6307 is >> itmp; | |
6308 itmp--; | |
6309 is >> jtmp; | |
6310 jtmp--; | |
6311 tmp = octave_read_double (is); | |
6312 | |
6313 if (is) | |
6314 { | |
6315 if (jold != jtmp) | |
6316 { | |
6317 for (int j = jold; j < jtmp; j++) | |
6318 a.cidx(j+1) = ii; | |
6319 | |
6320 jold = jtmp; | |
6321 } | |
6322 a.data (ii) = tmp; | |
6323 a.ridx (ii++) = itmp; | |
6324 } | |
6325 else | |
6326 goto done; | |
6327 } | |
6328 | |
6329 for (int j = jold; j < nc; j++) | |
6330 a.cidx(j+1) = ii; | |
6331 } | |
6332 | |
6333 done: | |
6334 | |
6335 return is; | |
6336 } | |
6337 | |
6338 SparseMatrix | |
6339 SparseMatrix::squeeze (void) const | |
6340 { | |
6341 return MSparse<double>::squeeze (); | |
6342 } | |
6343 | |
6344 SparseMatrix | |
6345 SparseMatrix::index (idx_vector& i, int resize_ok) const | |
6346 { | |
6347 return MSparse<double>::index (i, resize_ok); | |
6348 } | |
6349 | |
6350 SparseMatrix | |
6351 SparseMatrix::index (idx_vector& i, idx_vector& j, int resize_ok) const | |
6352 { | |
6353 return MSparse<double>::index (i, j, resize_ok); | |
6354 } | |
6355 | |
6356 SparseMatrix | |
6357 SparseMatrix::index (Array<idx_vector>& ra_idx, int resize_ok) const | |
6358 { | |
6359 return MSparse<double>::index (ra_idx, resize_ok); | |
6360 } | |
6361 | |
6362 SparseMatrix | |
6363 SparseMatrix::reshape (const dim_vector& new_dims) const | |
6364 { | |
6365 return MSparse<double>::reshape (new_dims); | |
6366 } | |
6367 | |
6368 SparseMatrix | |
6369 SparseMatrix::permute (const Array<int>& vec, bool inv) const | |
6370 { | |
6371 return MSparse<double>::permute (vec, inv); | |
6372 } | |
6373 | |
6374 SparseMatrix | |
6375 SparseMatrix::ipermute (const Array<int>& vec) const | |
6376 { | |
6377 return MSparse<double>::ipermute (vec); | |
6378 } | |
6379 | |
6380 // matrix by matrix -> matrix operations | |
6381 | |
6382 SparseMatrix | |
6383 operator * (const SparseMatrix& m, const SparseMatrix& a) | |
6384 { | |
6385 #ifdef HAVE_SPARSE_BLAS | |
6386 // XXX FIXME XXX Isn't there a sparse BLAS ?? | |
6387 #else | |
6388 // Use Andy's sparse matrix multiply function | |
6389 SPARSE_SPARSE_MUL (SparseMatrix, double); | |
6390 #endif | |
6391 } | |
6392 | |
6393 // XXX FIXME XXX -- it would be nice to share code among the min/max | |
6394 // functions below. | |
6395 | |
6396 #define EMPTY_RETURN_CHECK(T) \ | |
6397 if (nr == 0 || nc == 0) \ | |
6398 return T (nr, nc); | |
6399 | |
6400 SparseMatrix | |
6401 min (double d, const SparseMatrix& m) | |
6402 { | |
6403 SparseMatrix result; | |
6404 | |
6405 int nr = m.rows (); | |
6406 int nc = m.columns (); | |
6407 | |
6408 EMPTY_RETURN_CHECK (SparseMatrix); | |
6409 | |
6410 // Count the number of non-zero elements | |
6411 if (d < 0.) | |
6412 { | |
6413 result = SparseMatrix (nr, nc, d); | |
6414 for (int j = 0; j < nc; j++) | |
6415 for (int i = m.cidx(j); i < m.cidx(j+1); i++) | |
6416 { | |
6417 double tmp = xmin (d, m.data (i)); | |
6418 if (tmp != 0.) | |
6419 { | |
6420 int idx = m.ridx(i) + j * nr; | |
6421 result.xdata(idx) = tmp; | |
6422 result.xridx(idx) = m.ridx(i); | |
6423 } | |
6424 } | |
6425 } | |
6426 else | |
6427 { | |
6428 int nel = 0; | |
6429 for (int j = 0; j < nc; j++) | |
6430 for (int i = m.cidx(j); i < m.cidx(j+1); i++) | |
6431 if (xmin (d, m.data (i)) != 0.) | |
6432 nel++; | |
6433 | |
6434 result = SparseMatrix (nr, nc, nel); | |
6435 | |
6436 int ii = 0; | |
6437 result.xcidx(0) = 0; | |
6438 for (int j = 0; j < nc; j++) | |
6439 { | |
6440 for (int i = m.cidx(j); i < m.cidx(j+1); i++) | |
6441 { | |
6442 double tmp = xmin (d, m.data (i)); | |
6443 | |
6444 if (tmp != 0.) | |
6445 { | |
6446 result.xdata(ii) = tmp; | |
6447 result.xridx(ii++) = m.ridx(i); | |
6448 } | |
6449 } | |
6450 result.xcidx(j+1) = ii; | |
6451 } | |
6452 } | |
6453 | |
6454 return result; | |
6455 } | |
6456 | |
6457 SparseMatrix | |
6458 min (const SparseMatrix& m, double d) | |
6459 { | |
6460 return min (d, m); | |
6461 } | |
6462 | |
6463 SparseMatrix | |
6464 min (const SparseMatrix& a, const SparseMatrix& b) | |
6465 { | |
6466 SparseMatrix r; | |
6467 | |
6468 if ((a.rows() == b.rows()) && (a.cols() == b.cols())) | |
6469 { | |
6470 int a_nr = a.rows (); | |
6471 int a_nc = a.cols (); | |
6472 | |
6473 int b_nr = b.rows (); | |
6474 int b_nc = b.cols (); | |
6475 | |
6476 if (a_nr != b_nr || a_nc != b_nc) | |
6477 gripe_nonconformant ("min", a_nr, a_nc, b_nr, b_nc); | |
6478 else | |
6479 { | |
6480 r = SparseMatrix (a_nr, a_nc, (a.nnz () + b.nnz ())); | |
6481 | |
6482 int jx = 0; | |
6483 r.cidx (0) = 0; | |
6484 for (int i = 0 ; i < a_nc ; i++) | |
6485 { | |
6486 int ja = a.cidx(i); | |
6487 int ja_max = a.cidx(i+1); | |
6488 bool ja_lt_max= ja < ja_max; | |
6489 | |
6490 int jb = b.cidx(i); | |
6491 int jb_max = b.cidx(i+1); | |
6492 bool jb_lt_max = jb < jb_max; | |
6493 | |
6494 while (ja_lt_max || jb_lt_max ) | |
6495 { | |
6496 OCTAVE_QUIT; | |
6497 if ((! jb_lt_max) || | |
6498 (ja_lt_max && (a.ridx(ja) < b.ridx(jb)))) | |
6499 { | |
6500 double tmp = xmin (a.data(ja), 0.); | |
6501 if (tmp != 0.) | |
6502 { | |
6503 r.ridx(jx) = a.ridx(ja); | |
6504 r.data(jx) = tmp; | |
6505 jx++; | |
6506 } | |
6507 ja++; | |
6508 ja_lt_max= ja < ja_max; | |
6509 } | |
6510 else if (( !ja_lt_max ) || | |
6511 (jb_lt_max && (b.ridx(jb) < a.ridx(ja)) ) ) | |
6512 { | |
6513 double tmp = xmin (0., b.data(jb)); | |
6514 if (tmp != 0.) | |
6515 { | |
6516 r.ridx(jx) = b.ridx(jb); | |
6517 r.data(jx) = tmp; | |
6518 jx++; | |
6519 } | |
6520 jb++; | |
6521 jb_lt_max= jb < jb_max; | |
6522 } | |
6523 else | |
6524 { | |
6525 double tmp = xmin (a.data(ja), b.data(jb)); | |
6526 if (tmp != 0.) | |
6527 { | |
6528 r.data(jx) = tmp; | |
6529 r.ridx(jx) = a.ridx(ja); | |
6530 jx++; | |
6531 } | |
6532 ja++; | |
6533 ja_lt_max= ja < ja_max; | |
6534 jb++; | |
6535 jb_lt_max= jb < jb_max; | |
6536 } | |
6537 } | |
6538 r.cidx(i+1) = jx; | |
6539 } | |
6540 | |
6541 r.maybe_compress (); | |
6542 } | |
6543 } | |
6544 else | |
6545 (*current_liboctave_error_handler) ("matrix size mismatch"); | |
6546 | |
6547 return r; | |
6548 } | |
6549 | |
6550 SparseMatrix | |
6551 max (double d, const SparseMatrix& m) | |
6552 { | |
6553 SparseMatrix result; | |
6554 | |
6555 int nr = m.rows (); | |
6556 int nc = m.columns (); | |
6557 | |
6558 EMPTY_RETURN_CHECK (SparseMatrix); | |
6559 | |
6560 // Count the number of non-zero elements | |
6561 if (d > 0.) | |
6562 { | |
6563 result = SparseMatrix (nr, nc, d); | |
6564 for (int j = 0; j < nc; j++) | |
6565 for (int i = m.cidx(j); i < m.cidx(j+1); i++) | |
6566 { | |
6567 double tmp = xmax (d, m.data (i)); | |
6568 | |
6569 if (tmp != 0.) | |
6570 { | |
6571 int idx = m.ridx(i) + j * nr; | |
6572 result.xdata(idx) = tmp; | |
6573 result.xridx(idx) = m.ridx(i); | |
6574 } | |
6575 } | |
6576 } | |
6577 else | |
6578 { | |
6579 int nel = 0; | |
6580 for (int j = 0; j < nc; j++) | |
6581 for (int i = m.cidx(j); i < m.cidx(j+1); i++) | |
6582 if (xmax (d, m.data (i)) != 0.) | |
6583 nel++; | |
6584 | |
6585 result = SparseMatrix (nr, nc, nel); | |
6586 | |
6587 int ii = 0; | |
6588 result.xcidx(0) = 0; | |
6589 for (int j = 0; j < nc; j++) | |
6590 { | |
6591 for (int i = m.cidx(j); i < m.cidx(j+1); i++) | |
6592 { | |
6593 double tmp = xmax (d, m.data (i)); | |
6594 if (tmp != 0.) | |
6595 { | |
6596 result.xdata(ii) = tmp; | |
6597 result.xridx(ii++) = m.ridx(i); | |
6598 } | |
6599 } | |
6600 result.xcidx(j+1) = ii; | |
6601 } | |
6602 } | |
6603 | |
6604 return result; | |
6605 } | |
6606 | |
6607 SparseMatrix | |
6608 max (const SparseMatrix& m, double d) | |
6609 { | |
6610 return max (d, m); | |
6611 } | |
6612 | |
6613 SparseMatrix | |
6614 max (const SparseMatrix& a, const SparseMatrix& b) | |
6615 { | |
6616 SparseMatrix r; | |
6617 | |
6618 if ((a.rows() == b.rows()) && (a.cols() == b.cols())) | |
6619 { | |
6620 int a_nr = a.rows (); | |
6621 int a_nc = a.cols (); | |
6622 | |
6623 int b_nr = b.rows (); | |
6624 int b_nc = b.cols (); | |
6625 | |
6626 if (a_nr != b_nr || a_nc != b_nc) | |
6627 gripe_nonconformant ("min", a_nr, a_nc, b_nr, b_nc); | |
6628 else | |
6629 { | |
6630 r = SparseMatrix (a_nr, a_nc, (a.nnz () + b.nnz ())); | |
6631 | |
6632 int jx = 0; | |
6633 r.cidx (0) = 0; | |
6634 for (int i = 0 ; i < a_nc ; i++) | |
6635 { | |
6636 int ja = a.cidx(i); | |
6637 int ja_max = a.cidx(i+1); | |
6638 bool ja_lt_max= ja < ja_max; | |
6639 | |
6640 int jb = b.cidx(i); | |
6641 int jb_max = b.cidx(i+1); | |
6642 bool jb_lt_max = jb < jb_max; | |
6643 | |
6644 while (ja_lt_max || jb_lt_max ) | |
6645 { | |
6646 OCTAVE_QUIT; | |
6647 if ((! jb_lt_max) || | |
6648 (ja_lt_max && (a.ridx(ja) < b.ridx(jb)))) | |
6649 { | |
6650 double tmp = xmax (a.data(ja), 0.); | |
6651 if (tmp != 0.) | |
6652 { | |
6653 r.ridx(jx) = a.ridx(ja); | |
6654 r.data(jx) = tmp; | |
6655 jx++; | |
6656 } | |
6657 ja++; | |
6658 ja_lt_max= ja < ja_max; | |
6659 } | |
6660 else if (( !ja_lt_max ) || | |
6661 (jb_lt_max && (b.ridx(jb) < a.ridx(ja)) ) ) | |
6662 { | |
6663 double tmp = xmax (0., b.data(jb)); | |
6664 if (tmp != 0.) | |
6665 { | |
6666 r.ridx(jx) = b.ridx(jb); | |
6667 r.data(jx) = tmp; | |
6668 jx++; | |
6669 } | |
6670 jb++; | |
6671 jb_lt_max= jb < jb_max; | |
6672 } | |
6673 else | |
6674 { | |
6675 double tmp = xmax (a.data(ja), b.data(jb)); | |
6676 if (tmp != 0.) | |
6677 { | |
6678 r.data(jx) = tmp; | |
6679 r.ridx(jx) = a.ridx(ja); | |
6680 jx++; | |
6681 } | |
6682 ja++; | |
6683 ja_lt_max= ja < ja_max; | |
6684 jb++; | |
6685 jb_lt_max= jb < jb_max; | |
6686 } | |
6687 } | |
6688 r.cidx(i+1) = jx; | |
6689 } | |
6690 | |
6691 r.maybe_compress (); | |
6692 } | |
6693 } | |
6694 else | |
6695 (*current_liboctave_error_handler) ("matrix size mismatch"); | |
6696 | |
6697 return r; | |
6698 } | |
6699 | |
6700 SPARSE_SMS_CMP_OPS (SparseMatrix, 0.0, , double, 0.0, ) | |
6701 SPARSE_SMS_BOOL_OPS (SparseMatrix, double, 0.0) | |
6702 | |
6703 SPARSE_SSM_CMP_OPS (double, 0.0, , SparseMatrix, 0.0, ) | |
6704 SPARSE_SSM_BOOL_OPS (double, SparseMatrix, 0.0) | |
6705 | |
6706 SPARSE_SMSM_CMP_OPS (SparseMatrix, 0.0, , SparseMatrix, 0.0, ) | |
6707 SPARSE_SMSM_BOOL_OPS (SparseMatrix, SparseMatrix, 0.0) | |
6708 | |
6709 /* | |
6710 ;;; Local Variables: *** | |
6711 ;;; mode: C++ *** | |
6712 ;;; End: *** | |
6713 */ |