Mercurial > hg > octave-nkf
comparison scripts/general/cart2sph.m @ 10688:7357e37f34fa
coordinate transforms: add option to operate on column matrix of coordinates.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 08 Jun 2010 21:47:05 -0700 |
parents | a8ce6bdecce5 |
children | fd0a3ac60b0e |
comparison
equal
deleted
inserted
replaced
10687:a8ce6bdecce5 | 10688:7357e37f34fa |
---|---|
15 ## You should have received a copy of the GNU General Public License | 15 ## You should have received a copy of the GNU General Public License |
16 ## along with Octave; see the file COPYING. If not, see | 16 ## along with Octave; see the file COPYING. If not, see |
17 ## <http://www.gnu.org/licenses/>. | 17 ## <http://www.gnu.org/licenses/>. |
18 | 18 |
19 ## -*- texinfo -*- | 19 ## -*- texinfo -*- |
20 ## @deftypefn {Function File} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z}) | 20 ## @deftypefn {Function File} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z}) |
21 ## @deftypefnx {Function File} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{C}) | |
22 ## @deftypefnx {Function File} {@var{S} =} cart2sph (@dots{}) | |
21 ## Transform Cartesian to spherical coordinates. | 23 ## Transform Cartesian to spherical coordinates. |
22 ## @var{x}, @var{y} and @var{z} must be the same shape, or scalar. | 24 ## |
23 ## @var{theta} describes the angle relative to the positive x-axis. | 25 ## @var{theta} describes the angle relative to the positive x-axis. |
24 ## @var{phi} is the angle relative to the xy-plane. | 26 ## @var{phi} is the angle relative to the xy-plane. |
25 ## @var{r} is the distance to the origin @w{(0, 0, 0)}. | 27 ## @var{r} is the distance to the origin @w{(0, 0, 0)}. |
26 ## @seealso{pol2cart, cart2pol, sph2cart} | 28 ## @var{x}, @var{y}, and @var{z} must be the same shape, or scalar. |
29 ## If called with a single matrix argument then each row of @var{c} | |
30 ## represents the Cartesian coordinate (@var{x}, @var{y}, @var{z}). | |
31 ## | |
32 ## If only a single return argument is requested then return a matrix | |
33 ## @var{s} where each row represents one spherical coordinate | |
34 ## (@var{theta}, @var{phi}, @var{r}). | |
35 ## @seealso{sph2cart, cart2pol, pol2cart} | |
27 ## @end deftypefn | 36 ## @end deftypefn |
28 | 37 |
29 ## Author: Kai Habel <kai.habel@gmx.de> | 38 ## Author: Kai Habel <kai.habel@gmx.de> |
30 ## Adapted-by: jwe | 39 ## Adapted-by: jwe |
31 | 40 |
32 function [theta, phi, r] = cart2sph (x, y, z) | 41 function [theta, phi, r] = cart2sph (x, y, z) |
33 | 42 |
34 if (nargin != 3) | 43 if (nargin != 1 && nargin != 3) |
35 print_usage (); | 44 print_usage (); |
36 endif | 45 endif |
37 | 46 |
38 if ((ismatrix (x) && ismatrix (y) && ismatrix (z)) | 47 if (nargin == 1) |
39 && (size_equal (x, y) || isscalar (x) || isscalar (y)) | 48 if (ismatrix (x) && columns (x) == 3) |
40 && (size_equal (x, z) || isscalar (x) || isscalar (z)) | 49 z = x(:,3); |
41 && (size_equal (y, z) || isscalar (y) || isscalar (z))) | 50 y = x(:,2); |
51 x = x(:,1); | |
52 else | |
53 error ("cart2sph: matrix input must have 3 columns [X, Y, Z]"); | |
54 endif | |
55 elseif (nargin == 3) | |
56 if (! ((ismatrix (x) && ismatrix (y) && ismatrix (z)) | |
57 && (size_equal (x, y) || isscalar (x) || isscalar (y)) | |
58 && (size_equal (x, z) || isscalar (x) || isscalar (z)) | |
59 && (size_equal (y, z) || isscalar (y) || isscalar (z)))) | |
60 error ("cart2sph: X, Y, Z must be matrices of the same size, or scalar"); | |
61 endif | |
62 endif | |
42 | 63 |
43 theta = atan2 (y, x); | 64 theta = atan2 (y, x); |
44 phi = atan2 (z, sqrt (x .^ 2 + y .^ 2)); | 65 phi = atan2 (z, sqrt (x .^ 2 + y .^ 2)); |
45 r = sqrt (x .^ 2 + y .^ 2 + z .^ 2); | 66 r = sqrt (x .^ 2 + y .^ 2 + z .^ 2); |
46 | 67 |
47 else | 68 if (nargout <= 1) |
48 error ("cart2sph: arguments must be matrices of same size, or scalar"); | 69 theta = [theta, phi, r]; |
49 endif | 70 endif |
50 | 71 |
51 endfunction | 72 endfunction |
52 | 73 |
53 %!test | 74 %!test |
84 %! [t, p, r] = cart2sph (x, y, z); | 105 %! [t, p, r] = cart2sph (x, y, z); |
85 %! assert (t, [0, 1, 1] * pi/4); | 106 %! assert (t, [0, 1, 1] * pi/4); |
86 %! assert (p, [0, 0, 0]); | 107 %! assert (p, [0, 0, 0]); |
87 %! assert (r, [0, 1, 2] * sqrt(2)); | 108 %! assert (r, [0, 1, 2] * sqrt(2)); |
88 | 109 |
110 %!test | |
111 %! C = [0, 0, 0; 1, 0, 1; 2, 0, 2]; | |
112 %! S = [0, 0, 0; 0, pi/4, sqrt(2); 0, pi/4, 2*sqrt(2)]; | |
113 %! assert (cart2sph(C), S, eps); |