Mercurial > hg > octave-nkf
comparison liboctave/Array.cc @ 8290:7cbe01c21986
improve dense array indexing
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Mon, 20 Oct 2008 16:54:28 +0200 |
parents | 6c08e3921d3e |
children | f2e050b62199 |
comparison
equal
deleted
inserted
replaced
8289:ac7f334d9652 | 8290:7cbe01c21986 |
---|---|
1 // Template array classes | 1 // Template array classes |
2 /* | 2 /* |
3 | 3 |
4 Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000, 2002, 2003, 2004, | 4 Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000, 2002, 2003, 2004, |
5 2005, 2006, 2007 John W. Eaton | 5 2005, 2006, 2007 John W. Eaton |
6 Copyright (C) 2008 Jaroslav Hajek <highegg@gmail.com> | |
6 | 7 |
7 This file is part of Octave. | 8 This file is part of Octave. |
8 | 9 |
9 Octave is free software; you can redistribute it and/or modify it | 10 Octave is free software; you can redistribute it and/or modify it |
10 under the terms of the GNU General Public License as published by the | 11 under the terms of the GNU General Public License as published by the |
30 #include <climits> | 31 #include <climits> |
31 | 32 |
32 #include <iostream> | 33 #include <iostream> |
33 #include <sstream> | 34 #include <sstream> |
34 #include <vector> | 35 #include <vector> |
36 #include <algorithm> | |
35 #include <new> | 37 #include <new> |
36 | 38 |
37 #include "Array.h" | 39 #include "Array.h" |
38 #include "Array-util.h" | 40 #include "Array-util.h" |
39 #include "idx-vector.h" | 41 #include "idx-vector.h" |
42 // One dimensional array class. Handles the reference counting for | 44 // One dimensional array class. Handles the reference counting for |
43 // all the derived classes. | 45 // all the derived classes. |
44 | 46 |
45 template <class T> | 47 template <class T> |
46 Array<T>::Array (const Array<T>& a, const dim_vector& dv) | 48 Array<T>::Array (const Array<T>& a, const dim_vector& dv) |
47 : rep (a.rep), dimensions (dv), idx (0), idx_count (0) | 49 : rep (a.rep), dimensions (dv) |
48 { | 50 { |
49 rep->count++; | 51 rep->count++; |
50 | 52 |
51 if (a.numel () < dv.numel ()) | 53 if (a.numel () < dv.numel ()) |
52 (*current_liboctave_error_handler) | 54 (*current_liboctave_error_handler) |
56 template <class T> | 58 template <class T> |
57 Array<T>::~Array (void) | 59 Array<T>::~Array (void) |
58 { | 60 { |
59 if (--rep->count <= 0) | 61 if (--rep->count <= 0) |
60 delete rep; | 62 delete rep; |
61 | |
62 delete [] idx; | |
63 } | 63 } |
64 | 64 |
65 template <class T> | 65 template <class T> |
66 Array<T>& | 66 Array<T>& |
67 Array<T>::operator = (const Array<T>& a) | 67 Array<T>::operator = (const Array<T>& a) |
73 | 73 |
74 rep = a.rep; | 74 rep = a.rep; |
75 rep->count++; | 75 rep->count++; |
76 | 76 |
77 dimensions = a.dimensions; | 77 dimensions = a.dimensions; |
78 | |
79 delete [] idx; | |
80 idx_count = 0; | |
81 idx = 0; | |
82 } | 78 } |
83 | 79 |
84 return *this; | 80 return *this; |
85 } | 81 } |
86 | 82 |
557 retval.chop_trailing_singletons (); | 553 retval.chop_trailing_singletons (); |
558 | 554 |
559 return retval; | 555 return retval; |
560 } | 556 } |
561 | 557 |
558 // Helper class for multi-d index reduction and recursive indexing/indexed assignment. | |
559 // Rationale: we could avoid recursion using a state machine instead. However, using | |
560 // recursion is much more amenable to possible parallelization in the future. | |
561 // Also, the recursion solution is cleaner and more understandable. | |
562 class rec_index_helper | |
563 { | |
564 octave_idx_type *dim, *cdim; | |
565 idx_vector *idx; | |
566 int top; | |
567 | |
568 public: | |
569 rec_index_helper (const dim_vector& dv, const Array<idx_vector>& ia) | |
570 { | |
571 int n = ia.length (); | |
572 assert (n > 0 && (dv.length () == std::max (n, 2))); | |
573 | |
574 dim = new octave_idx_type [2*n]; | |
575 // A hack to avoid double allocation | |
576 cdim = dim + n; | |
577 idx = new idx_vector [n]; | |
578 top = 0; | |
579 | |
580 dim[0] = dv(0); | |
581 cdim[0] = 1; | |
582 idx[0] = ia(0); | |
583 | |
584 for (int i = 1; i < n; i++) | |
585 { | |
586 // Try reduction... | |
587 if (idx[top].maybe_reduce (dim[top], ia(i), dv(i))) | |
588 { | |
589 // Reduction successful, fold dimensions. | |
590 dim[top] *= dv(i); | |
591 } | |
592 else | |
593 { | |
594 // Unsuccessful, store index & cumulative dim. | |
595 top++; | |
596 idx[top] = ia(i); | |
597 dim[top] = dv(i); | |
598 cdim[top] = cdim[top-1] * dim[top-1]; | |
599 } | |
600 } | |
601 } | |
602 | |
603 ~rec_index_helper (void) { delete [] idx; delete [] dim; } | |
604 | |
605 private: | |
606 | |
607 // Recursive N-d indexing | |
608 template <class T> | |
609 T *do_index (const T *src, T *dest, int lev) const | |
610 { | |
611 if (lev == 0) | |
612 dest += idx[0].index (src, dim[0], dest); | |
613 else | |
614 { | |
615 octave_idx_type n = idx[lev].length (dim[lev]), d = cdim[lev]; | |
616 for (octave_idx_type i = 0; i < n; i++) | |
617 dest = do_index (src + d*idx[lev].xelem (i), dest, lev-1); | |
618 } | |
619 | |
620 return dest; | |
621 } | |
622 | |
623 // Recursive N-d indexed assignment | |
624 template <class T> | |
625 const T *do_assign (const T *src, T *dest, int lev) const | |
626 { | |
627 if (lev == 0) | |
628 src += idx[0].assign (src, dim[0], dest); | |
629 else | |
630 { | |
631 octave_idx_type n = idx[lev].length (dim[lev]), d = cdim[lev]; | |
632 for (octave_idx_type i = 0; i < n; i++) | |
633 src = do_assign (src, dest + d*idx[lev].xelem (i), lev-1); | |
634 } | |
635 | |
636 return src; | |
637 } | |
638 | |
639 // Recursive N-d indexed assignment | |
640 template <class T> | |
641 void do_fill (const T& val, T *dest, int lev) const | |
642 { | |
643 if (lev == 0) | |
644 idx[0].fill (val, dim[0], dest); | |
645 else | |
646 { | |
647 octave_idx_type n = idx[lev].length (dim[lev]), d = cdim[lev]; | |
648 for (octave_idx_type i = 0; i < n; i++) | |
649 do_fill (val, dest + d*idx[lev].xelem (i), lev-1); | |
650 } | |
651 } | |
652 | |
653 public: | |
654 | |
655 template <class T> | |
656 void index (const T *src, T *dest) const { do_index (src, dest, top); } | |
657 | |
658 template <class T> | |
659 void assign (const T *src, T *dest) const { do_assign (src, dest, top); } | |
660 | |
661 template <class T> | |
662 void fill (const T& val, T *dest) const { do_fill (val, dest, top); } | |
663 | |
664 }; | |
665 | |
666 // Helper class for multi-d recursive resizing | |
667 // This handles resize () in an efficient manner, touching memory only | |
668 // once (apart from reinitialization) | |
669 class rec_resize_helper | |
670 { | |
671 octave_idx_type *cext, *sext, *dext; | |
672 int n; | |
673 | |
674 public: | |
675 rec_resize_helper (const dim_vector& ndv, const dim_vector& odv) | |
676 { | |
677 int l = ndv.length (); | |
678 assert (odv.length () == l); | |
679 octave_idx_type ld = 1; | |
680 int i = 0; | |
681 for (; i < l-1 && ndv(i) == odv(i); i++) ld *= ndv(i); | |
682 n = l - i; | |
683 cext = new octave_idx_type[3*n]; | |
684 // Trick to avoid three allocations | |
685 sext = cext + n; | |
686 dext = sext + n; | |
687 | |
688 octave_idx_type sld = ld, dld = ld; | |
689 for (int j = 0; j < n; j++) | |
690 { | |
691 cext[j] = std::min (ndv(i+j), odv(i+j)); | |
692 sext[j] = sld *= odv(i+j); | |
693 dext[j] = dld *= ndv(i+j); | |
694 } | |
695 cext[0] *= ld; | |
696 } | |
697 | |
698 ~rec_resize_helper (void) { delete [] cext; } | |
699 | |
700 private: | |
701 // recursive resizing | |
702 template <class T> | |
703 void do_resize_fill (const T* src, T *dest, const T& rfv, int lev) const | |
704 { | |
705 if (lev == 0) | |
706 { | |
707 T* destc = std::copy (src, src + cext[0], dest); | |
708 std::fill (destc, dest + dext[0], rfv); | |
709 } | |
710 else | |
711 { | |
712 octave_idx_type sd = sext[lev-1], dd = dext[lev-1], k; | |
713 for (k = 0; k < cext[lev]; k++) | |
714 do_resize_fill (src + k * sd, dest + k * dd, rfv, lev - 1); | |
715 | |
716 std::fill (dest + k * dd, dest + dext[lev], rfv); | |
717 } | |
718 } | |
719 public: | |
720 template <class T> | |
721 void resize_fill (const T* src, T *dest, const T& rfv) const | |
722 { do_resize_fill (src, dest, rfv, n-1); } | |
723 | |
724 }; | |
725 | |
726 static void gripe_index_out_of_range (void) | |
727 { | |
728 (*current_liboctave_error_handler) | |
729 ("A(I): Index exceeds matrix dimension."); | |
730 } | |
731 | |
732 template <class T> | |
733 Array<T> | |
734 Array<T>::index (const idx_vector& i) const | |
735 { | |
736 octave_idx_type n = numel (); | |
737 Array<T> retval; | |
738 | |
739 if (i.is_colon ()) | |
740 { | |
741 // A(:) produces a shallow copy as a column vector. | |
742 retval.dimensions = dim_vector (n, 1); | |
743 rep->count++; | |
744 retval.rep = rep; | |
745 } | |
746 else if (i.extent (n) != n) | |
747 { | |
748 gripe_index_out_of_range (); | |
749 } | |
750 else | |
751 { | |
752 // FIXME: This is the only place where orig_dimensions are used. | |
753 dim_vector rd = i.orig_dimensions (); | |
754 octave_idx_type il = i.length (n); | |
755 | |
756 // FIXME: This is for Matlab compatibility. Matlab 2007 given `b = ones(3,1)' | |
757 // yields the following: | |
758 // b(zeros(0,0)) gives [] | |
759 // b(zeros(1,0)) gives zeros(0,1) | |
760 // b(zeros(0,1)) gives zeros(0,1) | |
761 // b(zeros(0,m)) gives zeros(0,m) | |
762 // b(zeros(m,0)) gives zeros(m,0) | |
763 // b(1:2) gives ones(2,1) | |
764 // b(ones(2)) gives ones(2) etc. | |
765 // As you can see, the behaviour is weird, but the tests end up pretty | |
766 // simple. Nah, I don't want to suggest that this is ad hoc :) Neither do | |
767 // I want to say that Matlab is a lousy piece of s...oftware. | |
768 if (ndims () == 2 && n != 1) | |
769 { | |
770 if (columns () == 1 && rd(0) == 1) | |
771 rd = dim_vector (il, 1); | |
772 else if (rows () == 1 && rd(1) == 1) | |
773 rd = dim_vector (1, il); | |
774 } | |
775 | |
776 // Don't use resize here to avoid useless initialization for POD types. | |
777 retval = Array<T> (rd); | |
778 | |
779 if (il != 0) | |
780 i.index (data (), n, retval.fortran_vec ()); | |
781 } | |
782 | |
783 return retval; | |
784 } | |
785 | |
786 template <class T> | |
787 Array<T> | |
788 Array<T>::index (const idx_vector& i, const idx_vector& j) const | |
789 { | |
790 // Get dimensions, allowing Fortran indexing in the 2nd dim. | |
791 dim_vector dv = dimensions.redim (2); | |
792 octave_idx_type r = dv(0), c = dv(1); | |
793 Array<T> retval; | |
794 | |
795 if (i.is_colon () && j.is_colon ()) | |
796 { | |
797 // A(:,:) produces a shallow copy. | |
798 retval = Array<T> (*this, dv); | |
799 } | |
800 else if (i.extent (r) != r || j.extent (c) != c) | |
801 { | |
802 gripe_index_out_of_range (); | |
803 } | |
804 else | |
805 { | |
806 octave_idx_type n = numel (), il = i.length (r), jl = j.length (c); | |
807 | |
808 // Don't use resize here to avoid useless initialization for POD types. | |
809 retval = Array<T> (dim_vector (il, jl)); | |
810 | |
811 idx_vector ii (i); | |
812 | |
813 const T* src = data (); | |
814 T *dest = retval.fortran_vec (); | |
815 | |
816 if (ii.maybe_reduce (r, j, c)) | |
817 ii.index (src, n, dest); | |
818 else | |
819 { | |
820 for (octave_idx_type k = 0; k < jl; k++) | |
821 dest += i.index (src + r * j.xelem (k), r, dest); | |
822 } | |
823 } | |
824 | |
825 return retval; | |
826 } | |
827 | |
828 template <class T> | |
829 Array<T> | |
830 Array<T>::index (const Array<idx_vector>& ia) const | |
831 { | |
832 int ial = ia.length (); | |
833 Array<T> retval; | |
834 | |
835 // FIXME: is this dispatching necessary? | |
836 if (ial == 1) | |
837 retval = index (ia(0)); | |
838 else if (ial == 2) | |
839 retval = index (ia(0), ia(1)); | |
840 else if (ial > 0) | |
841 { | |
842 // Get dimensions, allowing Fortran indexing in the last dim. | |
843 dim_vector dv = dimensions.redim (ial); | |
844 | |
845 // Check for out of bounds conditions. | |
846 bool all_colons = true, mismatch = false; | |
847 for (int i = 0; i < ial; i++) | |
848 { | |
849 if (ia(i).extent (dv(i)) != dv(i)) | |
850 { | |
851 mismatch = true; | |
852 break; | |
853 } | |
854 else | |
855 all_colons = all_colons && ia(i).is_colon (); | |
856 } | |
857 | |
858 | |
859 if (mismatch) | |
860 { | |
861 gripe_index_out_of_range (); | |
862 } | |
863 else if (all_colons) | |
864 { | |
865 // A(:,:,...,:) produces a shallow copy. | |
866 retval = Array<T> (*this, dv); | |
867 } | |
868 else | |
869 { | |
870 // Form result dimensions. | |
871 dim_vector rdv; | |
872 rdv.resize (ial); | |
873 for (int i = 0; i < ial; i++) rdv(i) = ia(i).length (dv(i)); | |
874 rdv.chop_trailing_singletons (); | |
875 | |
876 // Don't use resize here to avoid useless initialization for POD types. | |
877 retval = Array<T> (rdv); | |
878 | |
879 // Prepare for recursive indexing | |
880 rec_index_helper rh (dv, ia); | |
881 | |
882 // Do it. | |
883 rh.index (data (), retval.fortran_vec ()); | |
884 } | |
885 } | |
886 | |
887 return retval; | |
888 } | |
889 | |
890 // FIXME: the following is a common error message to resize, regardless of whether it's | |
891 // called from assign or elsewhere. It seems OK to me, but eventually the gripe can be | |
892 // specialized. Anyway, propagating various error messages into procedure is, IMHO, a | |
893 // nonsense. If anything, we should change error handling here (and throughout liboctave) | |
894 // to allow custom handling of errors | |
895 static void gripe_invalid_resize (void) | |
896 { | |
897 (*current_liboctave_error_handler) | |
898 ("resize: Invalid resizing operation or ambiguous assignment to an out-of-bounds array element."); | |
899 } | |
900 | |
901 // The default fill value. Override if you want a different one. | |
902 | |
903 template <class T> | |
904 T Array<T>::resize_fill_value () | |
905 { | |
906 return T (); | |
907 } | |
908 | |
909 // Yes, we could do resize using index & assign. However, that would possibly | |
910 // involve a lot more memory traffic than we actually need. | |
911 | |
562 template <class T> | 912 template <class T> |
563 void | 913 void |
564 Array<T>::resize_no_fill (octave_idx_type n) | 914 Array<T>::resize_fill (octave_idx_type n, const T& rfv) |
565 { | 915 { |
566 if (n < 0) | 916 if (n >= 0 && ndims () == 2) |
917 { | |
918 dim_vector dv; | |
919 // This is driven by Matlab's behaviour of giving a *row* vector on | |
920 // some out-of-bounds assignments. Specifically, matlab allows a(i) with | |
921 // out-of-bouds i when a is either of 0x0, 1x0, 1x1, 0xN, and gives | |
922 // a row vector in all cases (yes, even the last one, search me why). | |
923 // Giving a column vector would make much more sense (given the way | |
924 // trailing singleton dims are treated), but hey, Matlab is not here to | |
925 // make sense, it's here to make money ;) | |
926 bool invalid = false; | |
927 if (rows () == 0 || rows () == 1) | |
928 dv = dim_vector (1, n); | |
929 else if (columns () == 1) | |
930 dv = dim_vector (n, 1); | |
931 else | |
932 invalid = true; | |
933 | |
934 if (invalid) | |
935 gripe_invalid_resize (); | |
936 else | |
937 { | |
938 octave_idx_type nx = numel (); | |
939 if (n != nx) | |
940 { | |
941 Array<T> tmp = Array<T> (dv); | |
942 T *dest = tmp.fortran_vec (); | |
943 | |
944 octave_idx_type n0 = std::min (n, nx), n1 = n - n0; | |
945 dest = std::copy (data (), data () + n0, dest); | |
946 std::fill (dest, dest + n1, rfv); | |
947 | |
948 *this = tmp; | |
949 } | |
950 } | |
951 } | |
952 else | |
953 gripe_invalid_resize (); | |
954 } | |
955 | |
956 template <class T> | |
957 void | |
958 Array<T>::resize_fill (octave_idx_type r, octave_idx_type c, const T& rfv) | |
959 { | |
960 if (r >= 0 && c >= 0 && ndims () == 2) | |
961 { | |
962 octave_idx_type rx = rows (), cx = columns (); | |
963 if (r != rx || c != cx) | |
964 { | |
965 Array<T> tmp = Array<T> (dim_vector (r, c)); | |
966 T *dest = tmp.fortran_vec (); | |
967 | |
968 octave_idx_type r0 = std::min (r, rx), r1 = r - r0; | |
969 octave_idx_type c0 = std::min (c, cx), c1 = c - c0; | |
970 const T *src = data (); | |
971 if (r == rx) | |
972 dest = std::copy (src, src + r * c0, dest); | |
973 else | |
974 { | |
975 for (octave_idx_type k = 0; k < c0; k++) | |
976 { | |
977 dest = std::copy (src, src + r0, dest); | |
978 src += rx; | |
979 std::fill (dest, dest + r1, rfv); | |
980 dest += r1; | |
981 } | |
982 } | |
983 | |
984 std::fill (dest, dest + r * c1, rfv); | |
985 | |
986 *this = tmp; | |
987 } | |
988 } | |
989 else | |
990 gripe_invalid_resize (); | |
991 | |
992 } | |
993 | |
994 template<class T> | |
995 void | |
996 Array<T>::resize_fill (const dim_vector& dv, const T& rfv) | |
997 { | |
998 int dvl = dv.length (); | |
999 if (dvl == 1) | |
1000 resize (dv(0), rfv); | |
1001 else if (dvl == 2) | |
1002 resize (dv(0), dv(1), rfv); | |
1003 else if (dimensions != dv) | |
1004 { | |
1005 if (dimensions.length () <= dvl) | |
1006 { | |
1007 Array<T> tmp (dv); | |
1008 // Prepare for recursive resizing. | |
1009 rec_resize_helper rh (dv, dimensions.redim (dvl)); | |
1010 | |
1011 // Do it. | |
1012 rh.resize_fill (data (), tmp.fortran_vec (), rfv); | |
1013 *this = tmp; | |
1014 } | |
1015 else | |
1016 gripe_invalid_resize (); | |
1017 } | |
1018 } | |
1019 | |
1020 template <class T> | |
1021 Array<T> | |
1022 Array<T>::index (const idx_vector& i, bool resize_ok, const T& rfv) const | |
1023 { | |
1024 Array<T> tmp = *this; | |
1025 if (resize_ok) | |
1026 { | |
1027 octave_idx_type n = numel (), nx = i.extent (n); | |
1028 if (n != nx) | |
1029 tmp.resize_fill (nx, rfv); | |
1030 | |
1031 if (tmp.numel () != nx) | |
1032 return Array<T> (); | |
1033 } | |
1034 | |
1035 return tmp.index (i); | |
1036 } | |
1037 | |
1038 template <class T> | |
1039 Array<T> | |
1040 Array<T>::index (const idx_vector& i, const idx_vector& j, | |
1041 bool resize_ok, const T& rfv) const | |
1042 { | |
1043 Array<T> tmp = *this; | |
1044 if (resize_ok) | |
1045 { | |
1046 dim_vector dv = dimensions.redim (2); | |
1047 octave_idx_type r = dv(0), c = dv(1); | |
1048 octave_idx_type rx = i.extent (r), cx = j.extent (c); | |
1049 if (r != rx || c != cx) | |
1050 tmp.resize_fill (rx, cx, rfv); | |
1051 | |
1052 if (tmp.rows () != rx || tmp.columns () != cx) | |
1053 return Array<T> (); | |
1054 } | |
1055 | |
1056 return tmp.index (i, j); | |
1057 } | |
1058 | |
1059 template <class T> | |
1060 Array<T> | |
1061 Array<T>::index (const Array<idx_vector>& ia, | |
1062 bool resize_ok, const T& rfv) const | |
1063 { | |
1064 Array<T> tmp = *this; | |
1065 if (resize_ok) | |
1066 { | |
1067 int ial = ia.length (); | |
1068 dim_vector dv = dimensions.redim (ial); | |
1069 dim_vector dvx; dvx.resize (ial); | |
1070 for (int i = 0; i < ial; i++) dvx(i) = ia(i).extent (dv (i)); | |
1071 if (! (dvx == dv)) | |
1072 tmp.resize_fill (dvx, rfv); | |
1073 | |
1074 if (tmp.dimensions != dvx) | |
1075 return Array<T> (); | |
1076 } | |
1077 | |
1078 return tmp.index (ia); | |
1079 } | |
1080 | |
1081 | |
1082 static void | |
1083 gripe_invalid_assignment_size (void) | |
1084 { | |
1085 (*current_liboctave_error_handler) | |
1086 ("A(I) = X: X must have the same size as I"); | |
1087 } | |
1088 | |
1089 static void | |
1090 gripe_assignment_dimension_mismatch (void) | |
1091 { | |
1092 (*current_liboctave_error_handler) | |
1093 ("A(I,J,...) = X: dimensions mismatch"); | |
1094 } | |
1095 | |
1096 template <class T> | |
1097 void | |
1098 Array<T>::assign (const idx_vector& i, const Array<T>& rhs, const T& rfv) | |
1099 { | |
1100 octave_idx_type n = numel (), rhl = rhs.numel (); | |
1101 | |
1102 if (rhl == 1 || i.length (n) == rhl) | |
1103 { | |
1104 octave_idx_type nx = i.extent (n); | |
1105 // Try to resize first if necessary. | |
1106 if (nx != n) | |
1107 { | |
1108 resize_fill (nx, rfv); | |
1109 n = numel (); | |
1110 } | |
1111 | |
1112 // If the resizing was ambiguous, resize has already griped. | |
1113 if (nx == n) | |
1114 { | |
1115 if (i.is_colon ()) | |
1116 { | |
1117 // A(:) = X makes a full fill or a shallow copy. | |
1118 if (rhl == 1) | |
1119 fill (rhs(0)); | |
1120 else | |
1121 *this = rhs.reshape (dimensions); | |
1122 } | |
1123 else | |
1124 { | |
1125 if (rhl == 1) | |
1126 i.fill (rhs(0), n, fortran_vec ()); | |
1127 else | |
1128 i.assign (rhs.data (), n, fortran_vec ()); | |
1129 } | |
1130 } | |
1131 } | |
1132 else | |
1133 gripe_invalid_assignment_size (); | |
1134 } | |
1135 | |
1136 template <class T> | |
1137 void | |
1138 Array<T>::assign (const idx_vector& i, const idx_vector& j, | |
1139 const Array<T>& rhs, const T& rfv) | |
1140 { | |
1141 // Get RHS extents, discarding singletons. | |
1142 dim_vector rhdv = rhs.dims (); | |
1143 // Get LHS extents, allowing Fortran indexing in the second dim. | |
1144 dim_vector dv = dimensions.redim (2); | |
1145 // Check for out-of-bounds and form resizing dimensions. | |
1146 dim_vector rdv; | |
1147 // In the special when all dimensions are zero, colons are allowed to inquire | |
1148 // the shape of RHS. The rules are more obscure, so we solve that elsewhere. | |
1149 if (dv.all_zero ()) | |
1150 rdv = zero_dims_inquire (i, j, rhdv); | |
1151 else | |
1152 { | |
1153 rdv(0) = i.extent (dv(0)); | |
1154 rdv(1) = j.extent (dv(1)); | |
1155 } | |
1156 | |
1157 bool isfill = rhs.numel () == 1; | |
1158 octave_idx_type il = i.length (rdv(0)), jl = j.length (rdv(1)); | |
1159 rhdv.chop_all_singletons (); | |
1160 bool match = isfill || (rhdv.length () == 2 && il == rhdv(0) && jl == rhdv(1)); | |
1161 match = match || (il == 1 && jl == rhdv(0) && rhdv(1) == 1); | |
1162 | |
1163 if (match) | |
1164 { | |
1165 // Resize if requested. | |
1166 if (rdv != dv) | |
1167 { | |
1168 resize (rdv, rfv); | |
1169 dv = dimensions; | |
1170 } | |
1171 | |
1172 // If the resizing was invalid, resize has already griped. | |
1173 if (dv == rdv) | |
1174 { | |
1175 if (i.is_colon () && j.is_colon ()) | |
1176 { | |
1177 // A(:,:) = X makes a full fill or a shallow copy | |
1178 if (isfill) | |
1179 fill (rhs(0)); | |
1180 else | |
1181 *this = rhs.reshape (dimensions); | |
1182 } | |
1183 else | |
1184 { | |
1185 // The actual work. | |
1186 octave_idx_type n = numel (), r = rows (), c = columns (); | |
1187 idx_vector ii (i); | |
1188 | |
1189 const T* src = rhs.data (); | |
1190 T *dest = fortran_vec (); | |
1191 | |
1192 // Try reduction first. | |
1193 if (ii.maybe_reduce (r, j, c)) | |
1194 { | |
1195 if (isfill) | |
1196 ii.fill (*src, n, dest); | |
1197 else | |
1198 ii.assign (src, n, dest); | |
1199 } | |
1200 else | |
1201 { | |
1202 if (isfill) | |
1203 { | |
1204 for (octave_idx_type k = 0; k < jl; k++) | |
1205 i.fill (*src, r, dest + r * j.xelem (k)); | |
1206 } | |
1207 else | |
1208 { | |
1209 for (octave_idx_type k = 0; k < jl; k++) | |
1210 src += i.assign (src, r, dest + r * j.xelem (k)); | |
1211 } | |
1212 } | |
1213 } | |
1214 | |
1215 } | |
1216 | |
1217 } | |
1218 else | |
1219 gripe_assignment_dimension_mismatch (); | |
1220 } | |
1221 | |
1222 template <class T> | |
1223 void | |
1224 Array<T>::assign (const Array<idx_vector>& ia, | |
1225 const Array<T>& rhs, const T& rfv) | |
1226 { | |
1227 int ial = ia.length (); | |
1228 | |
1229 // FIXME: is this dispatching necessary / desirable? | |
1230 if (ial == 1) | |
1231 assign (ia(0), rhs, rfv); | |
1232 else if (ial == 2) | |
1233 assign (ia(0), ia(1), rhs, rfv); | |
1234 else if (ial > 0) | |
1235 { | |
1236 // Get RHS extents, discarding singletons. | |
1237 dim_vector rhdv = rhs.dims (); | |
1238 | |
1239 // Get LHS extents, allowing Fortran indexing in the second dim. | |
1240 dim_vector dv = dimensions.redim (ial); | |
1241 | |
1242 // Get the extents forced by indexing. | |
1243 dim_vector rdv; | |
1244 | |
1245 // In the special when all dimensions are zero, colons are allowed to | |
1246 // inquire the shape of RHS. The rules are more obscure, so we solve that | |
1247 // elsewhere. | |
1248 if (dv.all_zero ()) | |
1249 rdv = zero_dims_inquire (ia, rhdv); | |
1250 else | |
1251 { | |
1252 rdv.resize (ial); | |
1253 for (int i = 0; i < ial; i++) | |
1254 rdv(i) = ia(i).extent (dv(i)); | |
1255 } | |
1256 | |
1257 // Check whether LHS and RHS match, up to singleton dims. | |
1258 bool match = true, all_colons = true, isfill = rhs.numel () == 1; | |
1259 | |
1260 rhdv.chop_all_singletons (); | |
1261 int j = 0, rhdvl = rhdv.length (); | |
1262 for (int i = 0; i < ial; i++) | |
1263 { | |
1264 all_colons = all_colons && ia(i).is_colon (); | |
1265 octave_idx_type l = ia(i).length (rdv(i)); | |
1266 if (l == 1) continue; | |
1267 match = match && j < rhdvl && l == rhdv(j++); | |
1268 } | |
1269 | |
1270 match = match && (j == rhdvl || rhdv(j) == 1); | |
1271 match = match || isfill; | |
1272 | |
1273 if (match) | |
1274 { | |
1275 // Resize first if necessary. | |
1276 if (rdv != dv) | |
1277 { | |
1278 resize_fill (rdv, rfv); | |
1279 dv = dimensions; | |
1280 chop_trailing_singletons (); | |
1281 } | |
1282 | |
1283 // If the resizing was invalid, resize has already griped. | |
1284 if (dv == rdv) | |
1285 { | |
1286 if (all_colons) | |
1287 { | |
1288 // A(:,:,...,:) = X makes a full fill or a shallow copy. | |
1289 if (isfill) | |
1290 fill (rhs(0)); | |
1291 else | |
1292 *this = rhs.reshape (dimensions); | |
1293 } | |
1294 else | |
1295 { | |
1296 // Do the actual work. | |
1297 | |
1298 // Prepare for recursive indexing | |
1299 rec_index_helper rh (dv, ia); | |
1300 | |
1301 // Do it. | |
1302 if (isfill) | |
1303 rh.fill (rhs(0), fortran_vec ()); | |
1304 else | |
1305 rh.assign (rhs.data (), fortran_vec ()); | |
1306 } | |
1307 } | |
1308 } | |
1309 else | |
1310 gripe_assignment_dimension_mismatch (); | |
1311 } | |
1312 } | |
1313 | |
1314 template <class T> | |
1315 void | |
1316 Array<T>::delete_elements (const idx_vector& i) | |
1317 { | |
1318 octave_idx_type n = numel (); | |
1319 if (i.is_colon ()) | |
1320 { | |
1321 *this = Array<T> (); | |
1322 } | |
1323 else if (i.extent (n) != n) | |
1324 { | |
1325 gripe_index_out_of_range (); | |
1326 } | |
1327 else if (i.length (n) != 0) | |
1328 { | |
1329 octave_idx_type l, u; | |
1330 | |
1331 bool col_vec = ndims () == 2 && columns () == 1 && rows () != 1; | |
1332 if (i.is_cont_range (n, l, u)) | |
1333 { | |
1334 // Special case deleting a contiguous range. | |
1335 octave_idx_type m = n + l - u; | |
1336 Array<T> tmp (dim_vector (col_vec ? m : 1, !col_vec ? m : 1)); | |
1337 const T *src = data (); | |
1338 T *dest = tmp.fortran_vec (); | |
1339 dest = std::copy (src, src + l, dest); | |
1340 dest = std::copy (src + u, src + n, dest); | |
1341 *this = tmp; | |
1342 } | |
1343 else | |
1344 { | |
1345 // Use index. | |
1346 *this = index (i.complement (n)); | |
1347 } | |
1348 } | |
1349 } | |
1350 | |
1351 template <class T> | |
1352 void | |
1353 Array<T>::delete_elements (int dim, const idx_vector& i) | |
1354 { | |
1355 if (dim > ndims ()) | |
567 { | 1356 { |
568 (*current_liboctave_error_handler) | 1357 (*current_liboctave_error_handler) |
569 ("can't resize to negative dimension"); | 1358 ("invalid dimension in delete_elements"); |
570 return; | 1359 return; |
571 } | 1360 } |
572 | 1361 |
573 if (n == length ()) | 1362 octave_idx_type n = dimensions (dim); |
574 return; | 1363 if (i.is_colon ()) |
575 | 1364 { |
576 typename Array<T>::ArrayRep *old_rep = rep; | 1365 *this = Array<T> (); |
577 const T *old_data = data (); | 1366 } |
578 octave_idx_type old_len = length (); | 1367 else if (i.extent (n) != n) |
579 | 1368 { |
580 rep = new typename Array<T>::ArrayRep (n); | 1369 gripe_index_out_of_range (); |
581 | 1370 } |
582 dimensions = dim_vector (n); | 1371 else if (i.length (n) != 0) |
583 | 1372 { |
584 if (n > 0 && old_data && old_len > 0) | 1373 octave_idx_type l, u; |
585 { | 1374 |
586 octave_idx_type min_len = old_len < n ? old_len : n; | 1375 if (i.is_cont_range (n, l, u)) |
587 | 1376 { |
588 for (octave_idx_type i = 0; i < min_len; i++) | 1377 // Special case deleting a contiguous range. |
589 xelem (i) = old_data[i]; | 1378 octave_idx_type nd = n + l - u, dl = 1, du = 1; |
590 } | 1379 dim_vector rdv = dimensions; |
591 | 1380 rdv(dim) = nd; |
592 if (--old_rep->count <= 0) | 1381 for (int k = 0; k < dim; k++) dl *= dimensions(k); |
593 delete old_rep; | 1382 for (int k = dim + 1; k < ndims (); k++) du *= dimensions(k); |
594 } | 1383 |
595 | 1384 // Special case deleting a contiguous range. |
596 template <class T> | 1385 Array<T> tmp = Array<T> (rdv); |
597 void | 1386 const T *src = data (); |
598 Array<T>::resize_no_fill (const dim_vector& dv) | 1387 T *dest = tmp.fortran_vec (); |
599 { | 1388 l *= dl; u *= dl; n *= dl; |
600 octave_idx_type n = dv.length (); | 1389 for (octave_idx_type k = 0; k < du; k++) |
601 | 1390 { |
602 for (octave_idx_type i = 0; i < n; i++) | 1391 dest = std::copy (src, src + l, dest); |
603 { | 1392 dest = std::copy (src + u, src + n, dest); |
604 if (dv(i) < 0) | 1393 src += n; |
605 { | 1394 } |
606 (*current_liboctave_error_handler) | 1395 |
607 ("can't resize to negative dimension"); | 1396 *this = tmp; |
608 return; | 1397 } |
609 } | 1398 else |
610 } | 1399 { |
611 | 1400 // Use index. |
612 bool same_size = true; | 1401 Array<idx_vector> ia (ndims (), idx_vector::colon); |
613 | 1402 ia (dim) = i.complement (n); |
614 if (dimensions.length () != n) | 1403 *this = index (ia); |
615 { | 1404 } |
616 same_size = false; | 1405 } |
617 } | 1406 } |
618 else | 1407 |
619 { | 1408 template <class T> |
620 for (octave_idx_type i = 0; i < n; i++) | 1409 void |
621 { | 1410 Array<T>::delete_elements (const Array<idx_vector>& ia) |
622 if (dv(i) != dimensions(i)) | 1411 { |
623 { | 1412 if (ia.length () == 1) |
624 same_size = false; | 1413 delete_elements (ia(0)); |
625 break; | 1414 else |
626 } | 1415 { |
627 } | 1416 int len = ia.length (), k, dim = -1; |
628 } | 1417 for (k = 0; k < len; k++) |
629 | 1418 { |
630 if (same_size) | 1419 if (! ia(k).is_colon ()) |
631 return; | 1420 { |
632 | 1421 if (dim < 0) |
633 typename Array<T>::ArrayRep *old_rep = rep; | 1422 dim = k; |
634 const T *old_data = data (); | 1423 else |
635 | 1424 break; |
636 octave_idx_type ts = get_size (dv); | 1425 } |
637 | 1426 } |
638 rep = new typename Array<T>::ArrayRep (ts); | 1427 if (dim < 0) |
639 | 1428 { |
640 dim_vector dv_old = dimensions; | 1429 dim_vector dv = dimensions; |
641 octave_idx_type dv_old_orig_len = dv_old.length (); | 1430 dv(0) = 0; |
642 dimensions = dv; | 1431 *this = Array<T> (dv); |
643 octave_idx_type ts_old = get_size (dv_old); | 1432 } |
644 | 1433 else if (k == len) |
645 if (ts > 0 && ts_old > 0 && dv_old_orig_len > 0) | 1434 { |
646 { | 1435 delete_elements (dim, ia(dim)); |
647 Array<octave_idx_type> ra_idx (dimensions.length (), 0); | 1436 } |
648 | 1437 else |
649 if (n > dv_old_orig_len) | 1438 { |
650 { | 1439 (*current_liboctave_error_handler) |
651 dv_old.resize (n); | 1440 ("A null assignment can only have one non-colon index."); |
652 | 1441 } |
653 for (octave_idx_type i = dv_old_orig_len; i < n; i++) | 1442 } |
654 dv_old.elem (i) = 1; | 1443 |
655 } | 1444 } |
656 | 1445 |
657 for (octave_idx_type i = 0; i < ts; i++) | 1446 // FIXME: Remove these methods or implement them using assign. |
658 { | |
659 if (index_in_bounds (ra_idx, dv_old)) | |
660 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; | |
661 | |
662 increment_index (ra_idx, dimensions); | |
663 } | |
664 } | |
665 | |
666 if (--old_rep->count <= 0) | |
667 delete old_rep; | |
668 } | |
669 | |
670 template <class T> | |
671 void | |
672 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c) | |
673 { | |
674 if (r < 0 || c < 0) | |
675 { | |
676 (*current_liboctave_error_handler) | |
677 ("can't resize to negative dimension"); | |
678 return; | |
679 } | |
680 | |
681 int n = ndims (); | |
682 | |
683 if (n == 0) | |
684 dimensions = dim_vector (0, 0); | |
685 | |
686 assert (ndims () == 2); | |
687 | |
688 if (r == dim1 () && c == dim2 ()) | |
689 return; | |
690 | |
691 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; | |
692 const T *old_data = data (); | |
693 | |
694 octave_idx_type old_d1 = dim1 (); | |
695 octave_idx_type old_d2 = dim2 (); | |
696 octave_idx_type old_len = length (); | |
697 | |
698 octave_idx_type ts = get_size (r, c); | |
699 | |
700 rep = new typename Array<T>::ArrayRep (ts); | |
701 | |
702 dimensions = dim_vector (r, c); | |
703 | |
704 if (ts > 0 && old_data && old_len > 0) | |
705 { | |
706 octave_idx_type min_r = old_d1 < r ? old_d1 : r; | |
707 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
708 | |
709 for (octave_idx_type j = 0; j < min_c; j++) | |
710 for (octave_idx_type i = 0; i < min_r; i++) | |
711 xelem (i, j) = old_data[old_d1*j+i]; | |
712 } | |
713 | |
714 if (--old_rep->count <= 0) | |
715 delete old_rep; | |
716 } | |
717 | |
718 template <class T> | |
719 void | |
720 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p) | |
721 { | |
722 if (r < 0 || c < 0 || p < 0) | |
723 { | |
724 (*current_liboctave_error_handler) | |
725 ("can't resize to negative dimension"); | |
726 return; | |
727 } | |
728 | |
729 int n = ndims (); | |
730 | |
731 if (n == 0) | |
732 dimensions = dim_vector (0, 0, 0); | |
733 | |
734 assert (ndims () == 3); | |
735 | |
736 if (r == dim1 () && c == dim2 () && p == dim3 ()) | |
737 return; | |
738 | |
739 typename Array<T>::ArrayRep *old_rep = rep; | |
740 const T *old_data = data (); | |
741 | |
742 octave_idx_type old_d1 = dim1 (); | |
743 octave_idx_type old_d2 = dim2 (); | |
744 octave_idx_type old_d3 = dim3 (); | |
745 octave_idx_type old_len = length (); | |
746 | |
747 octave_idx_type ts = get_size (get_size (r, c), p); | |
748 | |
749 rep = new typename Array<T>::ArrayRep (ts); | |
750 | |
751 dimensions = dim_vector (r, c, p); | |
752 | |
753 if (ts > 0 && old_data && old_len > 0) | |
754 { | |
755 octave_idx_type min_r = old_d1 < r ? old_d1 : r; | |
756 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
757 octave_idx_type min_p = old_d3 < p ? old_d3 : p; | |
758 | |
759 for (octave_idx_type k = 0; k < min_p; k++) | |
760 for (octave_idx_type j = 0; j < min_c; j++) | |
761 for (octave_idx_type i = 0; i < min_r; i++) | |
762 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; | |
763 } | |
764 | |
765 if (--old_rep->count <= 0) | |
766 delete old_rep; | |
767 } | |
768 | |
769 template <class T> | |
770 void | |
771 Array<T>::resize_and_fill (octave_idx_type n, const T& val) | |
772 { | |
773 if (n < 0) | |
774 { | |
775 (*current_liboctave_error_handler) | |
776 ("can't resize to negative dimension"); | |
777 return; | |
778 } | |
779 | |
780 if (n == length ()) | |
781 return; | |
782 | |
783 typename Array<T>::ArrayRep *old_rep = rep; | |
784 const T *old_data = data (); | |
785 octave_idx_type old_len = length (); | |
786 | |
787 rep = new typename Array<T>::ArrayRep (n); | |
788 | |
789 dimensions = dim_vector (n); | |
790 | |
791 if (n > 0) | |
792 { | |
793 octave_idx_type min_len = old_len < n ? old_len : n; | |
794 | |
795 if (old_data && old_len > 0) | |
796 { | |
797 for (octave_idx_type i = 0; i < min_len; i++) | |
798 xelem (i) = old_data[i]; | |
799 } | |
800 | |
801 for (octave_idx_type i = old_len; i < n; i++) | |
802 xelem (i) = val; | |
803 } | |
804 | |
805 if (--old_rep->count <= 0) | |
806 delete old_rep; | |
807 } | |
808 | |
809 template <class T> | |
810 void | |
811 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, const T& val) | |
812 { | |
813 if (r < 0 || c < 0) | |
814 { | |
815 (*current_liboctave_error_handler) | |
816 ("can't resize to negative dimension"); | |
817 return; | |
818 } | |
819 | |
820 if (ndims () == 0) | |
821 dimensions = dim_vector (0, 0); | |
822 | |
823 assert (ndims () == 2); | |
824 | |
825 if (r == dim1 () && c == dim2 ()) | |
826 return; | |
827 | |
828 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; | |
829 const T *old_data = data (); | |
830 | |
831 octave_idx_type old_d1 = dim1 (); | |
832 octave_idx_type old_d2 = dim2 (); | |
833 octave_idx_type old_len = length (); | |
834 | |
835 octave_idx_type ts = get_size (r, c); | |
836 | |
837 rep = new typename Array<T>::ArrayRep (ts); | |
838 | |
839 dimensions = dim_vector (r, c); | |
840 | |
841 if (ts > 0) | |
842 { | |
843 octave_idx_type min_r = old_d1 < r ? old_d1 : r; | |
844 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
845 | |
846 if (old_data && old_len > 0) | |
847 { | |
848 for (octave_idx_type j = 0; j < min_c; j++) | |
849 for (octave_idx_type i = 0; i < min_r; i++) | |
850 xelem (i, j) = old_data[old_d1*j+i]; | |
851 } | |
852 | |
853 for (octave_idx_type j = 0; j < min_c; j++) | |
854 for (octave_idx_type i = min_r; i < r; i++) | |
855 xelem (i, j) = val; | |
856 | |
857 for (octave_idx_type j = min_c; j < c; j++) | |
858 for (octave_idx_type i = 0; i < r; i++) | |
859 xelem (i, j) = val; | |
860 } | |
861 | |
862 if (--old_rep->count <= 0) | |
863 delete old_rep; | |
864 } | |
865 | |
866 template <class T> | |
867 void | |
868 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p, const T& val) | |
869 { | |
870 if (r < 0 || c < 0 || p < 0) | |
871 { | |
872 (*current_liboctave_error_handler) | |
873 ("can't resize to negative dimension"); | |
874 return; | |
875 } | |
876 | |
877 if (ndims () == 0) | |
878 dimensions = dim_vector (0, 0, 0); | |
879 | |
880 assert (ndims () == 3); | |
881 | |
882 if (r == dim1 () && c == dim2 () && p == dim3 ()) | |
883 return; | |
884 | |
885 typename Array<T>::ArrayRep *old_rep = rep; | |
886 const T *old_data = data (); | |
887 | |
888 octave_idx_type old_d1 = dim1 (); | |
889 octave_idx_type old_d2 = dim2 (); | |
890 octave_idx_type old_d3 = dim3 (); | |
891 | |
892 octave_idx_type old_len = length (); | |
893 | |
894 octave_idx_type ts = get_size (get_size (r, c), p); | |
895 | |
896 rep = new typename Array<T>::ArrayRep (ts); | |
897 | |
898 dimensions = dim_vector (r, c, p); | |
899 | |
900 if (ts > 0) | |
901 { | |
902 octave_idx_type min_r = old_d1 < r ? old_d1 : r; | |
903 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
904 octave_idx_type min_p = old_d3 < p ? old_d3 : p; | |
905 | |
906 if (old_data && old_len > 0) | |
907 for (octave_idx_type k = 0; k < min_p; k++) | |
908 for (octave_idx_type j = 0; j < min_c; j++) | |
909 for (octave_idx_type i = 0; i < min_r; i++) | |
910 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; | |
911 | |
912 // FIXME -- if the copy constructor is expensive, this | |
913 // may win. Otherwise, it may make more sense to just copy the | |
914 // value everywhere when making the new ArrayRep. | |
915 | |
916 for (octave_idx_type k = 0; k < min_p; k++) | |
917 for (octave_idx_type j = min_c; j < c; j++) | |
918 for (octave_idx_type i = 0; i < min_r; i++) | |
919 xelem (i, j, k) = val; | |
920 | |
921 for (octave_idx_type k = 0; k < min_p; k++) | |
922 for (octave_idx_type j = 0; j < c; j++) | |
923 for (octave_idx_type i = min_r; i < r; i++) | |
924 xelem (i, j, k) = val; | |
925 | |
926 for (octave_idx_type k = min_p; k < p; k++) | |
927 for (octave_idx_type j = 0; j < c; j++) | |
928 for (octave_idx_type i = 0; i < r; i++) | |
929 xelem (i, j, k) = val; | |
930 } | |
931 | |
932 if (--old_rep->count <= 0) | |
933 delete old_rep; | |
934 } | |
935 | |
936 template <class T> | |
937 void | |
938 Array<T>::resize_and_fill (const dim_vector& dv, const T& val) | |
939 { | |
940 octave_idx_type n = dv.length (); | |
941 | |
942 for (octave_idx_type i = 0; i < n; i++) | |
943 { | |
944 if (dv(i) < 0) | |
945 { | |
946 (*current_liboctave_error_handler) | |
947 ("can't resize to negative dimension"); | |
948 return; | |
949 } | |
950 } | |
951 | |
952 bool same_size = true; | |
953 | |
954 if (dimensions.length () != n) | |
955 { | |
956 same_size = false; | |
957 } | |
958 else | |
959 { | |
960 for (octave_idx_type i = 0; i < n; i++) | |
961 { | |
962 if (dv(i) != dimensions(i)) | |
963 { | |
964 same_size = false; | |
965 break; | |
966 } | |
967 } | |
968 } | |
969 | |
970 if (same_size) | |
971 return; | |
972 | |
973 typename Array<T>::ArrayRep *old_rep = rep; | |
974 const T *old_data = data (); | |
975 | |
976 octave_idx_type len = get_size (dv); | |
977 | |
978 rep = new typename Array<T>::ArrayRep (len); | |
979 | |
980 dim_vector dv_old = dimensions; | |
981 octave_idx_type dv_old_orig_len = dv_old.length (); | |
982 dimensions = dv; | |
983 | |
984 if (len > 0 && dv_old_orig_len > 0) | |
985 { | |
986 Array<octave_idx_type> ra_idx (dimensions.length (), 0); | |
987 | |
988 if (n > dv_old_orig_len) | |
989 { | |
990 dv_old.resize (n); | |
991 | |
992 for (octave_idx_type i = dv_old_orig_len; i < n; i++) | |
993 dv_old.elem (i) = 1; | |
994 } | |
995 | |
996 for (octave_idx_type i = 0; i < len; i++) | |
997 { | |
998 if (index_in_bounds (ra_idx, dv_old)) | |
999 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; | |
1000 else | |
1001 rep->elem (i) = val; | |
1002 | |
1003 increment_index (ra_idx, dimensions); | |
1004 } | |
1005 } | |
1006 else | |
1007 for (octave_idx_type i = 0; i < len; i++) | |
1008 rep->elem (i) = val; | |
1009 | |
1010 if (--old_rep->count <= 0) | |
1011 delete old_rep; | |
1012 } | |
1013 | 1447 |
1014 template <class T> | 1448 template <class T> |
1015 Array<T>& | 1449 Array<T>& |
1016 Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c) | 1450 Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
1017 { | 1451 { |
1191 (*current_liboctave_error_handler) | 1625 (*current_liboctave_error_handler) |
1192 ("Array<T>::insert: invalid indexing operation"); | 1626 ("Array<T>::insert: invalid indexing operation"); |
1193 | 1627 |
1194 return *this; | 1628 return *this; |
1195 } | 1629 } |
1630 | |
1196 | 1631 |
1197 template <class T> | 1632 template <class T> |
1198 Array<T> | 1633 Array<T> |
1199 Array<T>::transpose (void) const | 1634 Array<T>::transpose (void) const |
1200 { | 1635 { |
1401 new_dims(i) = dimensions(i); | 1836 new_dims(i) = dimensions(i); |
1402 } | 1837 } |
1403 | 1838 |
1404 if (nd != new_dims.length ()) | 1839 if (nd != new_dims.length ()) |
1405 dimensions = new_dims; | 1840 dimensions = new_dims; |
1406 } | |
1407 | |
1408 template <class T> | |
1409 void | |
1410 Array<T>::clear_index (void) const | |
1411 { | |
1412 delete [] idx; | |
1413 idx = 0; | |
1414 idx_count = 0; | |
1415 } | |
1416 | |
1417 template <class T> | |
1418 void | |
1419 Array<T>::set_index (const idx_vector& idx_arg) const | |
1420 { | |
1421 int nd = ndims (); | |
1422 | |
1423 if (! idx && nd > 0) | |
1424 idx = new idx_vector [nd]; | |
1425 | |
1426 if (idx_count < nd) | |
1427 { | |
1428 idx[idx_count++] = idx_arg; | |
1429 } | |
1430 else | |
1431 { | |
1432 idx_vector *new_idx = new idx_vector [idx_count+1]; | |
1433 | |
1434 for (int i = 0; i < idx_count; i++) | |
1435 new_idx[i] = idx[i]; | |
1436 | |
1437 new_idx[idx_count++] = idx_arg; | |
1438 | |
1439 delete [] idx; | |
1440 | |
1441 idx = new_idx; | |
1442 } | |
1443 } | |
1444 | |
1445 template <class T> | |
1446 void | |
1447 Array<T>::maybe_delete_elements (idx_vector& idx_arg) | |
1448 { | |
1449 switch (ndims ()) | |
1450 { | |
1451 case 1: | |
1452 maybe_delete_elements_1 (idx_arg); | |
1453 break; | |
1454 | |
1455 case 2: | |
1456 maybe_delete_elements_2 (idx_arg); | |
1457 break; | |
1458 | |
1459 default: | |
1460 (*current_liboctave_error_handler) | |
1461 ("Array<T>::maybe_delete_elements: invalid operation"); | |
1462 break; | |
1463 } | |
1464 } | |
1465 | |
1466 template <class T> | |
1467 void | |
1468 Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg) | |
1469 { | |
1470 octave_idx_type len = length (); | |
1471 | |
1472 if (len == 0) | |
1473 return; | |
1474 | |
1475 if (idx_arg.is_colon_equiv (len, 1)) | |
1476 resize_no_fill (0); | |
1477 else | |
1478 { | |
1479 int num_to_delete = idx_arg.length (len); | |
1480 | |
1481 if (num_to_delete != 0) | |
1482 { | |
1483 octave_idx_type new_len = len; | |
1484 | |
1485 octave_idx_type iidx = 0; | |
1486 | |
1487 for (octave_idx_type i = 0; i < len; i++) | |
1488 if (i == idx_arg.elem (iidx)) | |
1489 { | |
1490 iidx++; | |
1491 new_len--; | |
1492 | |
1493 if (iidx == num_to_delete) | |
1494 break; | |
1495 } | |
1496 | |
1497 if (new_len > 0) | |
1498 { | |
1499 T *new_data = new T [new_len]; | |
1500 | |
1501 octave_idx_type ii = 0; | |
1502 iidx = 0; | |
1503 for (octave_idx_type i = 0; i < len; i++) | |
1504 { | |
1505 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) | |
1506 iidx++; | |
1507 else | |
1508 { | |
1509 new_data[ii] = xelem (i); | |
1510 ii++; | |
1511 } | |
1512 } | |
1513 | |
1514 if (--rep->count <= 0) | |
1515 delete rep; | |
1516 | |
1517 rep = new typename Array<T>::ArrayRep (new_data, new_len); | |
1518 | |
1519 dimensions.resize (1); | |
1520 dimensions(0) = new_len; | |
1521 } | |
1522 else | |
1523 (*current_liboctave_error_handler) | |
1524 ("A(idx) = []: index out of range"); | |
1525 } | |
1526 } | |
1527 } | |
1528 | |
1529 template <class T> | |
1530 void | |
1531 Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg) | |
1532 { | |
1533 assert (ndims () == 2); | |
1534 | |
1535 octave_idx_type nr = dim1 (); | |
1536 octave_idx_type nc = dim2 (); | |
1537 | |
1538 if (idx_arg.is_colon ()) | |
1539 { | |
1540 // A(:) = [] always gives 0-by-0 matrix, even if A was empty. | |
1541 resize_no_fill (0, 0); | |
1542 return; | |
1543 } | |
1544 | |
1545 octave_idx_type n; | |
1546 if (nr == 1) | |
1547 n = nc; | |
1548 else if (nc == 1) | |
1549 n = nr; | |
1550 else if (! idx_arg.orig_empty ()) | |
1551 { | |
1552 // Reshape to row vector for Matlab compatibility. | |
1553 | |
1554 n = nr * nc; | |
1555 nr = 1; | |
1556 nc = n; | |
1557 } | |
1558 else | |
1559 return; | |
1560 | |
1561 idx_arg.sort (true); | |
1562 | |
1563 if (idx_arg.is_colon_equiv (n, 1)) | |
1564 { | |
1565 if (nr == 1) | |
1566 resize_no_fill (1, 0); | |
1567 else if (nc == 1) | |
1568 resize_no_fill (0, 1); | |
1569 return; | |
1570 } | |
1571 | |
1572 octave_idx_type num_to_delete = idx_arg.length (n); | |
1573 | |
1574 if (num_to_delete != 0) | |
1575 { | |
1576 octave_idx_type new_n = n; | |
1577 | |
1578 octave_idx_type iidx = 0; | |
1579 | |
1580 for (octave_idx_type i = 0; i < n; i++) | |
1581 if (i == idx_arg.elem (iidx)) | |
1582 { | |
1583 iidx++; | |
1584 new_n--; | |
1585 | |
1586 if (iidx == num_to_delete) | |
1587 break; | |
1588 } | |
1589 | |
1590 if (new_n > 0) | |
1591 { | |
1592 T *new_data = new T [new_n]; | |
1593 | |
1594 octave_idx_type ii = 0; | |
1595 iidx = 0; | |
1596 for (octave_idx_type i = 0; i < n; i++) | |
1597 { | |
1598 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) | |
1599 iidx++; | |
1600 else | |
1601 { | |
1602 new_data[ii] = xelem (i); | |
1603 | |
1604 ii++; | |
1605 } | |
1606 } | |
1607 | |
1608 if (--(Array<T>::rep)->count <= 0) | |
1609 delete Array<T>::rep; | |
1610 | |
1611 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n); | |
1612 | |
1613 dimensions.resize (2); | |
1614 | |
1615 if (nr == 1) | |
1616 { | |
1617 dimensions(0) = 1; | |
1618 dimensions(1) = new_n; | |
1619 } | |
1620 else | |
1621 { | |
1622 dimensions(0) = new_n; | |
1623 dimensions(1) = 1; | |
1624 } | |
1625 } | |
1626 else | |
1627 (*current_liboctave_error_handler) | |
1628 ("A(idx) = []: index out of range"); | |
1629 } | |
1630 } | |
1631 | |
1632 template <class T> | |
1633 void | |
1634 Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) | |
1635 { | |
1636 assert (ndims () == 2); | |
1637 | |
1638 octave_idx_type nr = dim1 (); | |
1639 octave_idx_type nc = dim2 (); | |
1640 | |
1641 if (idx_i.is_colon () && idx_j.is_colon ()) | |
1642 { | |
1643 // A special case: A(:,:). Matlab gives 0-by-nc here, but perhaps we | |
1644 // should not? | |
1645 resize_no_fill (0, nc); | |
1646 } | |
1647 else if (idx_i.is_colon ()) | |
1648 { | |
1649 idx_j.sort (true); // sort in advance to speed-up the following check | |
1650 | |
1651 if (idx_j.is_colon_equiv (nc, 1)) | |
1652 resize_no_fill (nr, 0); | |
1653 else | |
1654 { | |
1655 octave_idx_type num_to_delete = idx_j.length (nc); | |
1656 | |
1657 if (num_to_delete != 0) | |
1658 { | |
1659 octave_idx_type new_nc = nc; | |
1660 | |
1661 octave_idx_type iidx = 0; | |
1662 | |
1663 for (octave_idx_type j = 0; j < nc; j++) | |
1664 if (j == idx_j.elem (iidx)) | |
1665 { | |
1666 iidx++; | |
1667 new_nc--; | |
1668 | |
1669 if (iidx == num_to_delete) | |
1670 break; | |
1671 } | |
1672 | |
1673 if (new_nc > 0) | |
1674 { | |
1675 T *new_data = new T [nr * new_nc]; | |
1676 | |
1677 octave_idx_type jj = 0; | |
1678 iidx = 0; | |
1679 for (octave_idx_type j = 0; j < nc; j++) | |
1680 { | |
1681 if (iidx < num_to_delete && j == idx_j.elem (iidx)) | |
1682 iidx++; | |
1683 else | |
1684 { | |
1685 for (octave_idx_type i = 0; i < nr; i++) | |
1686 new_data[nr*jj+i] = xelem (i, j); | |
1687 jj++; | |
1688 } | |
1689 } | |
1690 | |
1691 if (--(Array<T>::rep)->count <= 0) | |
1692 delete Array<T>::rep; | |
1693 | |
1694 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc); | |
1695 | |
1696 dimensions.resize (2); | |
1697 dimensions(1) = new_nc; | |
1698 } | |
1699 else | |
1700 (*current_liboctave_error_handler) | |
1701 ("A(idx) = []: index out of range"); | |
1702 } | |
1703 } | |
1704 } | |
1705 else if (idx_j.is_colon ()) | |
1706 { | |
1707 idx_i.sort (true); // sort in advance to speed-up the following check | |
1708 | |
1709 if (idx_i.is_colon_equiv (nr, 1)) | |
1710 resize_no_fill (0, nc); | |
1711 else | |
1712 { | |
1713 octave_idx_type num_to_delete = idx_i.length (nr); | |
1714 | |
1715 if (num_to_delete != 0) | |
1716 { | |
1717 octave_idx_type new_nr = nr; | |
1718 | |
1719 octave_idx_type iidx = 0; | |
1720 | |
1721 for (octave_idx_type i = 0; i < nr; i++) | |
1722 if (i == idx_i.elem (iidx)) | |
1723 { | |
1724 iidx++; | |
1725 new_nr--; | |
1726 | |
1727 if (iidx == num_to_delete) | |
1728 break; | |
1729 } | |
1730 | |
1731 if (new_nr > 0) | |
1732 { | |
1733 T *new_data = new T [new_nr * nc]; | |
1734 | |
1735 octave_idx_type ii = 0; | |
1736 iidx = 0; | |
1737 for (octave_idx_type i = 0; i < nr; i++) | |
1738 { | |
1739 if (iidx < num_to_delete && i == idx_i.elem (iidx)) | |
1740 iidx++; | |
1741 else | |
1742 { | |
1743 for (octave_idx_type j = 0; j < nc; j++) | |
1744 new_data[new_nr*j+ii] = xelem (i, j); | |
1745 ii++; | |
1746 } | |
1747 } | |
1748 | |
1749 if (--(Array<T>::rep)->count <= 0) | |
1750 delete Array<T>::rep; | |
1751 | |
1752 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc); | |
1753 | |
1754 dimensions.resize (2); | |
1755 dimensions(0) = new_nr; | |
1756 } | |
1757 else | |
1758 (*current_liboctave_error_handler) | |
1759 ("A(idx) = []: index out of range"); | |
1760 } | |
1761 } | |
1762 } | |
1763 else if (! (idx_i.orig_empty () || idx_j.orig_empty ())) | |
1764 { | |
1765 (*current_liboctave_error_handler) | |
1766 ("a null assignment can have only one non-colon index"); | |
1767 } | |
1768 } | |
1769 | |
1770 template <class T> | |
1771 void | |
1772 Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&) | |
1773 { | |
1774 assert (0); | |
1775 } | |
1776 | |
1777 template <class T> | |
1778 void | |
1779 Array<T>::maybe_delete_elements (Array<idx_vector>& ra_idx) | |
1780 { | |
1781 octave_idx_type n_idx = ra_idx.length (); | |
1782 | |
1783 // Special case matrices | |
1784 if (ndims () == 2) | |
1785 { | |
1786 if (n_idx == 1) | |
1787 { | |
1788 maybe_delete_elements (ra_idx (0)); | |
1789 return; | |
1790 } | |
1791 else if (n_idx == 2) | |
1792 { | |
1793 maybe_delete_elements (ra_idx (0), ra_idx (1)); | |
1794 return; | |
1795 } | |
1796 } | |
1797 | |
1798 dim_vector lhs_dims = dims (); | |
1799 | |
1800 int n_lhs_dims = lhs_dims.length (); | |
1801 | |
1802 if (lhs_dims.all_zero ()) | |
1803 return; | |
1804 | |
1805 if (n_idx == 1 && ra_idx(0).is_colon ()) | |
1806 { | |
1807 resize (dim_vector (0, 0)); | |
1808 return; | |
1809 } | |
1810 | |
1811 if (n_idx > n_lhs_dims) | |
1812 { | |
1813 for (int i = n_idx; i < n_lhs_dims; i++) | |
1814 { | |
1815 // Ensure that extra indices are either colon or 1. | |
1816 | |
1817 if (! ra_idx(i).is_colon_equiv (1, 1)) | |
1818 { | |
1819 (*current_liboctave_error_handler) | |
1820 ("index exceeds array dimensions"); | |
1821 return; | |
1822 } | |
1823 } | |
1824 | |
1825 ra_idx.resize (n_lhs_dims); | |
1826 | |
1827 n_idx = n_lhs_dims; | |
1828 } | |
1829 | |
1830 Array<int> idx_is_colon (n_idx, 0); | |
1831 | |
1832 Array<int> idx_is_colon_equiv (n_idx, 0); | |
1833 | |
1834 // Initialization of colon arrays. | |
1835 | |
1836 for (octave_idx_type i = 0; i < n_idx; i++) | |
1837 { | |
1838 if (ra_idx(i).orig_empty ()) return; | |
1839 idx_is_colon_equiv(i) = ra_idx(i).is_colon_equiv (lhs_dims(i), 1); | |
1840 | |
1841 idx_is_colon(i) = ra_idx(i).is_colon (); | |
1842 } | |
1843 | |
1844 bool idx_ok = true; | |
1845 | |
1846 // Check for index out of bounds. | |
1847 | |
1848 for (octave_idx_type i = 0 ; i < n_idx - 1; i++) | |
1849 { | |
1850 if (! (idx_is_colon(i) || idx_is_colon_equiv(i))) | |
1851 { | |
1852 ra_idx(i).sort (true); | |
1853 | |
1854 if (ra_idx(i).max () > lhs_dims(i)) | |
1855 { | |
1856 (*current_liboctave_error_handler) | |
1857 ("index exceeds array dimensions"); | |
1858 | |
1859 idx_ok = false; | |
1860 break; | |
1861 } | |
1862 else if (ra_idx(i).min () < 0) // I believe this is checked elsewhere | |
1863 { | |
1864 (*current_liboctave_error_handler) | |
1865 ("index must be one or larger"); | |
1866 | |
1867 idx_ok = false; | |
1868 break; | |
1869 } | |
1870 } | |
1871 } | |
1872 | |
1873 if (n_idx <= n_lhs_dims) | |
1874 { | |
1875 octave_idx_type last_idx = ra_idx(n_idx-1).max (); | |
1876 | |
1877 octave_idx_type sum_el = lhs_dims(n_idx-1); | |
1878 | |
1879 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) | |
1880 sum_el *= lhs_dims(i); | |
1881 | |
1882 if (last_idx > sum_el - 1) | |
1883 { | |
1884 (*current_liboctave_error_handler) | |
1885 ("index exceeds array dimensions"); | |
1886 | |
1887 idx_ok = false; | |
1888 } | |
1889 } | |
1890 | |
1891 if (idx_ok) | |
1892 { | |
1893 if (n_idx > 1 | |
1894 && (all_ones (idx_is_colon))) | |
1895 { | |
1896 // A(:,:,:) -- we are deleting elements in all dimensions, so | |
1897 // the result is [](0x0x0). | |
1898 | |
1899 dim_vector newdim = dims (); | |
1900 newdim(0) = 0; | |
1901 | |
1902 resize (newdim); | |
1903 } | |
1904 | |
1905 else if (n_idx > 1 | |
1906 && num_ones (idx_is_colon) == n_idx - 1 | |
1907 && num_ones (idx_is_colon_equiv) == n_idx) | |
1908 { | |
1909 // A(:,:,j) -- we are deleting elements in one dimension by | |
1910 // enumerating them. | |
1911 // | |
1912 // If we enumerate all of the elements, we should have zero | |
1913 // elements in that dimension with the same number of elements | |
1914 // in the other dimensions that we started with. | |
1915 | |
1916 dim_vector temp_dims; | |
1917 temp_dims.resize (n_idx); | |
1918 | |
1919 for (octave_idx_type i = 0; i < n_idx; i++) | |
1920 { | |
1921 if (idx_is_colon (i)) | |
1922 temp_dims(i) = lhs_dims(i); | |
1923 else | |
1924 temp_dims(i) = 0; | |
1925 } | |
1926 | |
1927 resize (temp_dims); | |
1928 } | |
1929 else if (n_idx > 1 && num_ones (idx_is_colon) == n_idx - 1) | |
1930 { | |
1931 // We have colons in all indices except for one. | |
1932 // This index tells us which slice to delete | |
1933 | |
1934 if (n_idx < n_lhs_dims) | |
1935 { | |
1936 // Collapse dimensions beyond last index. | |
1937 | |
1938 if (! (ra_idx(n_idx-1).is_colon ())) | |
1939 (*current_liboctave_warning_with_id_handler) | |
1940 ("Octave:fortran-indexing", | |
1941 "fewer indices than dimensions for N-d array"); | |
1942 | |
1943 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) | |
1944 lhs_dims(n_idx-1) *= lhs_dims(i); | |
1945 | |
1946 lhs_dims.resize (n_idx); | |
1947 | |
1948 // Reshape *this. | |
1949 dimensions = lhs_dims; | |
1950 } | |
1951 | |
1952 int non_col = 0; | |
1953 | |
1954 // Find the non-colon column. | |
1955 | |
1956 for (octave_idx_type i = 0; i < n_idx; i++) | |
1957 { | |
1958 if (! idx_is_colon(i)) | |
1959 non_col = i; | |
1960 } | |
1961 | |
1962 // The length of the non-colon dimension. | |
1963 | |
1964 octave_idx_type non_col_dim = lhs_dims (non_col); | |
1965 | |
1966 octave_idx_type num_to_delete = ra_idx(non_col).length (lhs_dims (non_col)); | |
1967 | |
1968 if (num_to_delete > 0) | |
1969 { | |
1970 int temp = lhs_dims.num_ones (); | |
1971 | |
1972 if (non_col_dim == 1) | |
1973 temp--; | |
1974 | |
1975 if (temp == n_idx - 1 && num_to_delete == non_col_dim) | |
1976 { | |
1977 // We have A with (1x1x4), where A(1,:,1:4) | |
1978 // Delete all (0x0x0) | |
1979 | |
1980 dim_vector zero_dims (n_idx, 0); | |
1981 | |
1982 resize (zero_dims); | |
1983 } | |
1984 else | |
1985 { | |
1986 // New length of non-colon dimension | |
1987 // (calculated in the next for loop) | |
1988 | |
1989 octave_idx_type new_dim = non_col_dim; | |
1990 | |
1991 octave_idx_type iidx = 0; | |
1992 | |
1993 for (octave_idx_type j = 0; j < non_col_dim; j++) | |
1994 if (j == ra_idx(non_col).elem (iidx)) | |
1995 { | |
1996 iidx++; | |
1997 | |
1998 new_dim--; | |
1999 | |
2000 if (iidx == num_to_delete) | |
2001 break; | |
2002 } | |
2003 | |
2004 // Creating the new nd array after deletions. | |
2005 | |
2006 if (new_dim > 0) | |
2007 { | |
2008 // Calculate number of elements in new array. | |
2009 | |
2010 octave_idx_type num_new_elem=1; | |
2011 | |
2012 for (int i = 0; i < n_idx; i++) | |
2013 { | |
2014 if (i == non_col) | |
2015 num_new_elem *= new_dim; | |
2016 | |
2017 else | |
2018 num_new_elem *= lhs_dims(i); | |
2019 } | |
2020 | |
2021 T *new_data = new T [num_new_elem]; | |
2022 | |
2023 Array<octave_idx_type> result_idx (n_lhs_dims, 0); | |
2024 | |
2025 dim_vector new_lhs_dim = lhs_dims; | |
2026 | |
2027 new_lhs_dim(non_col) = new_dim; | |
2028 | |
2029 octave_idx_type num_elem = 1; | |
2030 | |
2031 octave_idx_type numidx = 0; | |
2032 | |
2033 octave_idx_type n = length (); | |
2034 | |
2035 for (int i = 0; i < n_lhs_dims; i++) | |
2036 if (i != non_col) | |
2037 num_elem *= lhs_dims(i); | |
2038 | |
2039 num_elem *= ra_idx(non_col).capacity (); | |
2040 | |
2041 for (octave_idx_type i = 0; i < n; i++) | |
2042 { | |
2043 if (numidx < num_elem | |
2044 && is_in (result_idx(non_col), ra_idx(non_col))) | |
2045 numidx++; | |
2046 | |
2047 else | |
2048 { | |
2049 Array<octave_idx_type> temp_result_idx = result_idx; | |
2050 | |
2051 octave_idx_type num_lgt = how_many_lgt (result_idx(non_col), | |
2052 ra_idx(non_col)); | |
2053 | |
2054 temp_result_idx(non_col) -= num_lgt; | |
2055 | |
2056 octave_idx_type kidx | |
2057 = ::compute_index (temp_result_idx, new_lhs_dim); | |
2058 | |
2059 new_data[kidx] = xelem (result_idx); | |
2060 } | |
2061 | |
2062 increment_index (result_idx, lhs_dims); | |
2063 } | |
2064 | |
2065 if (--rep->count <= 0) | |
2066 delete rep; | |
2067 | |
2068 rep = new typename Array<T>::ArrayRep (new_data, | |
2069 num_new_elem); | |
2070 | |
2071 dimensions = new_lhs_dim; | |
2072 } | |
2073 } | |
2074 } | |
2075 } | |
2076 else if (n_idx == 1) | |
2077 { | |
2078 // This handle cases where we only have one index (not | |
2079 // colon). The index denotes which elements we should | |
2080 // delete in the array which can be of any dimension. We | |
2081 // return a column vector, except for the case where we are | |
2082 // operating on a row vector. The elements are numerated | |
2083 // column by column. | |
2084 // | |
2085 // A(3,3,3)=2; | |
2086 // A(3:5) = []; A(6)=[] | |
2087 | |
2088 octave_idx_type lhs_numel = numel (); | |
2089 | |
2090 idx_vector idx_vec = ra_idx(0); | |
2091 | |
2092 idx_vec.freeze (lhs_numel, 0, true); | |
2093 | |
2094 idx_vec.sort (true); | |
2095 | |
2096 octave_idx_type num_to_delete = idx_vec.length (lhs_numel); | |
2097 | |
2098 if (num_to_delete > 0) | |
2099 { | |
2100 octave_idx_type new_numel = lhs_numel - num_to_delete; | |
2101 | |
2102 T *new_data = new T[new_numel]; | |
2103 | |
2104 Array<octave_idx_type> lhs_ra_idx (ndims (), 0); | |
2105 | |
2106 octave_idx_type ii = 0; | |
2107 octave_idx_type iidx = 0; | |
2108 | |
2109 for (octave_idx_type i = 0; i < lhs_numel; i++) | |
2110 { | |
2111 if (iidx < num_to_delete && i == idx_vec.elem (iidx)) | |
2112 { | |
2113 iidx++; | |
2114 } | |
2115 else | |
2116 { | |
2117 new_data[ii++] = xelem (lhs_ra_idx); | |
2118 } | |
2119 | |
2120 increment_index (lhs_ra_idx, lhs_dims); | |
2121 } | |
2122 | |
2123 if (--(Array<T>::rep)->count <= 0) | |
2124 delete Array<T>::rep; | |
2125 | |
2126 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_numel); | |
2127 | |
2128 dimensions.resize (2); | |
2129 | |
2130 if (lhs_dims.length () == 2 && lhs_dims(1) == 1) | |
2131 { | |
2132 dimensions(0) = new_numel; | |
2133 dimensions(1) = 1; | |
2134 } | |
2135 else | |
2136 { | |
2137 dimensions(0) = 1; | |
2138 dimensions(1) = new_numel; | |
2139 } | |
2140 } | |
2141 } | |
2142 else if (num_ones (idx_is_colon) < n_idx) | |
2143 { | |
2144 (*current_liboctave_error_handler) | |
2145 ("a null assignment can have only one non-colon index"); | |
2146 } | |
2147 } | |
2148 } | |
2149 | |
2150 template <class T> | |
2151 Array<T> | |
2152 Array<T>::value (void) const | |
2153 { | |
2154 Array<T> retval; | |
2155 | |
2156 int n_idx = index_count (); | |
2157 | |
2158 if (n_idx == 2) | |
2159 { | |
2160 idx_vector *tmp = get_idx (); | |
2161 | |
2162 idx_vector idx_i = tmp[0]; | |
2163 idx_vector idx_j = tmp[1]; | |
2164 | |
2165 retval = index (idx_i, idx_j); | |
2166 } | |
2167 else if (n_idx == 1) | |
2168 { | |
2169 retval = index (idx[0]); | |
2170 } | |
2171 else | |
2172 { | |
2173 clear_index (); | |
2174 | |
2175 (*current_liboctave_error_handler) | |
2176 ("Array<T>::value: invalid number of indices specified"); | |
2177 } | |
2178 | |
2179 clear_index (); | |
2180 | |
2181 return retval; | |
2182 } | |
2183 | |
2184 template <class T> | |
2185 Array<T> | |
2186 Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const | |
2187 { | |
2188 Array<T> retval; | |
2189 | |
2190 dim_vector dv = idx_arg.orig_dimensions (); | |
2191 | |
2192 if (dv.length () > 2 || ndims () > 2) | |
2193 retval = indexN (idx_arg, resize_ok, rfv); | |
2194 else | |
2195 { | |
2196 switch (ndims ()) | |
2197 { | |
2198 case 1: | |
2199 retval = index1 (idx_arg, resize_ok, rfv); | |
2200 break; | |
2201 | |
2202 case 2: | |
2203 retval = index2 (idx_arg, resize_ok, rfv); | |
2204 break; | |
2205 | |
2206 default: | |
2207 (*current_liboctave_error_handler) | |
2208 ("invalid array (internal error)"); | |
2209 break; | |
2210 } | |
2211 } | |
2212 | |
2213 return retval; | |
2214 } | |
2215 | |
2216 template <class T> | |
2217 Array<T> | |
2218 Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const | |
2219 { | |
2220 Array<T> retval; | |
2221 | |
2222 octave_idx_type len = length (); | |
2223 | |
2224 octave_idx_type n = idx_arg.freeze (len, "vector", resize_ok); | |
2225 | |
2226 if (idx_arg) | |
2227 { | |
2228 if (idx_arg.is_colon_equiv (len)) | |
2229 { | |
2230 retval = *this; | |
2231 } | |
2232 else if (n == 0) | |
2233 { | |
2234 retval.resize_no_fill (0); | |
2235 } | |
2236 else | |
2237 { | |
2238 retval.resize_no_fill (n); | |
2239 | |
2240 for (octave_idx_type i = 0; i < n; i++) | |
2241 { | |
2242 octave_idx_type ii = idx_arg.elem (i); | |
2243 if (ii >= len) | |
2244 retval.elem (i) = rfv; | |
2245 else | |
2246 retval.elem (i) = elem (ii); | |
2247 } | |
2248 } | |
2249 } | |
2250 | |
2251 // idx_vector::freeze() printed an error message for us. | |
2252 | |
2253 return retval; | |
2254 } | |
2255 | |
2256 template <class T> | |
2257 Array<T> | |
2258 Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const | |
2259 { | |
2260 Array<T> retval; | |
2261 | |
2262 assert (ndims () == 2); | |
2263 | |
2264 octave_idx_type nr = dim1 (); | |
2265 octave_idx_type nc = dim2 (); | |
2266 | |
2267 octave_idx_type orig_len = nr * nc; | |
2268 | |
2269 dim_vector idx_orig_dims = idx_arg.orig_dimensions (); | |
2270 | |
2271 octave_idx_type idx_orig_rows = idx_arg.orig_rows (); | |
2272 octave_idx_type idx_orig_columns = idx_arg.orig_columns (); | |
2273 | |
2274 if (idx_arg.is_colon ()) | |
2275 { | |
2276 // Fast magic colon processing. | |
2277 | |
2278 octave_idx_type result_nr = nr * nc; | |
2279 octave_idx_type result_nc = 1; | |
2280 | |
2281 retval = Array<T> (*this, dim_vector (result_nr, result_nc)); | |
2282 } | |
2283 else if (nr == 1 && nc == 1) | |
2284 { | |
2285 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); | |
2286 | |
2287 octave_idx_type len = tmp.length (); | |
2288 | |
2289 if (len >= idx_orig_dims.numel ()) | |
2290 retval = Array<T> (tmp, idx_orig_dims); | |
2291 } | |
2292 else if (nr == 1 || nc == 1) | |
2293 { | |
2294 // If indexing a vector with a matrix, return value has same | |
2295 // shape as the index. Otherwise, it has same orientation as | |
2296 // indexed object. | |
2297 | |
2298 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); | |
2299 | |
2300 octave_idx_type len = tmp.length (); | |
2301 | |
2302 if (idx_orig_rows == 1 || idx_orig_columns == 1) | |
2303 { | |
2304 if (nr == 1) | |
2305 retval = Array<T> (tmp, dim_vector (1, len)); | |
2306 else | |
2307 retval = Array<T> (tmp, dim_vector (len, 1)); | |
2308 } | |
2309 else if (len >= idx_orig_dims.numel ()) | |
2310 retval = Array<T> (tmp, idx_orig_dims); | |
2311 } | |
2312 else | |
2313 { | |
2314 (*current_liboctave_warning_with_id_handler) | |
2315 ("Octave:fortran-indexing", "single index used for matrix"); | |
2316 | |
2317 // This code is only for indexing matrices. The vector | |
2318 // cases are handled above. | |
2319 | |
2320 idx_arg.freeze (nr * nc, "matrix", resize_ok); | |
2321 | |
2322 if (idx_arg) | |
2323 { | |
2324 octave_idx_type result_nr = idx_orig_rows; | |
2325 octave_idx_type result_nc = idx_orig_columns; | |
2326 | |
2327 retval.resize_no_fill (result_nr, result_nc); | |
2328 | |
2329 octave_idx_type k = 0; | |
2330 for (octave_idx_type j = 0; j < result_nc; j++) | |
2331 { | |
2332 for (octave_idx_type i = 0; i < result_nr; i++) | |
2333 { | |
2334 octave_idx_type ii = idx_arg.elem (k++); | |
2335 if (ii >= orig_len) | |
2336 retval.elem (i, j) = rfv; | |
2337 else | |
2338 { | |
2339 octave_idx_type fr = ii % nr; | |
2340 octave_idx_type fc = (ii - fr) / nr; | |
2341 retval.elem (i, j) = elem (fr, fc); | |
2342 } | |
2343 } | |
2344 } | |
2345 } | |
2346 // idx_vector::freeze() printed an error message for us. | |
2347 } | |
2348 | |
2349 return retval; | |
2350 } | |
2351 | |
2352 template <class T> | |
2353 Array<T> | |
2354 Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const | |
2355 { | |
2356 Array<T> retval; | |
2357 | |
2358 dim_vector dv = dims (); | |
2359 | |
2360 int n_dims = dv.length (); | |
2361 | |
2362 octave_idx_type orig_len = dv.numel (); | |
2363 | |
2364 dim_vector idx_orig_dims = ra_idx.orig_dimensions (); | |
2365 | |
2366 if (ra_idx.is_colon ()) | |
2367 { | |
2368 // Fast magic colon processing. | |
2369 | |
2370 retval = Array<T> (*this, dim_vector (orig_len, 1)); | |
2371 } | |
2372 else | |
2373 { | |
2374 bool vec_equiv = vector_equivalent (dv); | |
2375 | |
2376 if (! (vec_equiv || ra_idx.is_colon ())) | |
2377 (*current_liboctave_warning_with_id_handler) | |
2378 ("Octave:fortran-indexing", "single index used for N-d array"); | |
2379 | |
2380 octave_idx_type frozen_len | |
2381 = ra_idx.freeze (orig_len, "nd-array", resize_ok); | |
2382 | |
2383 if (ra_idx) | |
2384 { | |
2385 dim_vector result_dims; | |
2386 | |
2387 if (vec_equiv && ! orig_len == 1) | |
2388 { | |
2389 result_dims = dv; | |
2390 | |
2391 for (int i = 0; i < n_dims; i++) | |
2392 { | |
2393 if (result_dims(i) != 1) | |
2394 { | |
2395 // All but this dim should be one. | |
2396 result_dims(i) = frozen_len; | |
2397 break; | |
2398 } | |
2399 } | |
2400 } | |
2401 else | |
2402 result_dims = idx_orig_dims; | |
2403 | |
2404 result_dims.chop_trailing_singletons (); | |
2405 | |
2406 retval.resize (result_dims); | |
2407 | |
2408 octave_idx_type n = result_dims.numel (); | |
2409 | |
2410 octave_idx_type k = 0; | |
2411 | |
2412 for (octave_idx_type i = 0; i < n; i++) | |
2413 { | |
2414 octave_idx_type ii = ra_idx.elem (k++); | |
2415 | |
2416 if (ii >= orig_len) | |
2417 retval.elem (i) = rfv; | |
2418 else | |
2419 retval.elem (i) = elem (ii); | |
2420 } | |
2421 } | |
2422 } | |
2423 | |
2424 return retval; | |
2425 } | |
2426 | |
2427 template <class T> | |
2428 Array<T> | |
2429 Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok, | |
2430 const T& rfv) const | |
2431 { | |
2432 Array<T> retval; | |
2433 | |
2434 if (ndims () != 2) | |
2435 { | |
2436 Array<idx_vector> ra_idx (2); | |
2437 ra_idx(0) = idx_i; | |
2438 ra_idx(1) = idx_j; | |
2439 return index (ra_idx, resize_ok, rfv); | |
2440 } | |
2441 | |
2442 octave_idx_type nr = dim1 (); | |
2443 octave_idx_type nc = dim2 (); | |
2444 | |
2445 octave_idx_type n = idx_i.freeze (nr, "row", resize_ok); | |
2446 octave_idx_type m = idx_j.freeze (nc, "column", resize_ok); | |
2447 | |
2448 if (idx_i && idx_j) | |
2449 { | |
2450 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) | |
2451 { | |
2452 retval.resize_no_fill (n, m); | |
2453 } | |
2454 else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc)) | |
2455 { | |
2456 retval = *this; | |
2457 } | |
2458 else | |
2459 { | |
2460 retval.resize_no_fill (n, m); | |
2461 | |
2462 for (octave_idx_type j = 0; j < m; j++) | |
2463 { | |
2464 octave_idx_type jj = idx_j.elem (j); | |
2465 for (octave_idx_type i = 0; i < n; i++) | |
2466 { | |
2467 octave_idx_type ii = idx_i.elem (i); | |
2468 if (ii >= nr || jj >= nc) | |
2469 retval.elem (i, j) = rfv; | |
2470 else | |
2471 retval.elem (i, j) = elem (ii, jj); | |
2472 } | |
2473 } | |
2474 } | |
2475 } | |
2476 | |
2477 // idx_vector::freeze() printed an error message for us. | |
2478 | |
2479 return retval; | |
2480 } | |
2481 | |
2482 template <class T> | |
2483 Array<T> | |
2484 Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T& rfv) const | |
2485 { | |
2486 // This function handles all calls with more than one idx. | |
2487 // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc. | |
2488 | |
2489 Array<T> retval; | |
2490 | |
2491 int n_dims = dimensions.length (); | |
2492 | |
2493 // Remove trailing singletons in ra_idx, but leave at least ndims | |
2494 // elements. | |
2495 | |
2496 octave_idx_type ra_idx_len = ra_idx.length (); | |
2497 | |
2498 bool trim_trailing_singletons = true; | |
2499 for (octave_idx_type j = ra_idx_len; j > n_dims; j--) | |
2500 { | |
2501 idx_vector iidx = ra_idx (ra_idx_len-1); | |
2502 if (iidx.capacity () == 1 && trim_trailing_singletons) | |
2503 ra_idx_len--; | |
2504 else | |
2505 trim_trailing_singletons = false; | |
2506 | |
2507 if (! resize_ok) | |
2508 { | |
2509 for (octave_idx_type i = 0; i < iidx.capacity (); i++) | |
2510 if (iidx (i) != 0) | |
2511 { | |
2512 (*current_liboctave_error_handler) | |
2513 ("index exceeds N-d array dimensions"); | |
2514 | |
2515 return retval; | |
2516 } | |
2517 } | |
2518 } | |
2519 | |
2520 ra_idx.resize (ra_idx_len); | |
2521 | |
2522 dim_vector new_dims = dims (); | |
2523 dim_vector frozen_lengths; | |
2524 | |
2525 if (!ra_idx (ra_idx_len - 1).orig_empty () && ra_idx_len < n_dims) | |
2526 frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok); | |
2527 else | |
2528 { | |
2529 new_dims.resize (ra_idx_len, 1); | |
2530 frozen_lengths = freeze (ra_idx, new_dims, resize_ok); | |
2531 } | |
2532 | |
2533 if (all_ok (ra_idx)) | |
2534 { | |
2535 if (any_orig_empty (ra_idx) || frozen_lengths.any_zero ()) | |
2536 { | |
2537 frozen_lengths.chop_trailing_singletons (); | |
2538 | |
2539 retval.resize (frozen_lengths); | |
2540 } | |
2541 else if (frozen_lengths.length () == n_dims | |
2542 && all_colon_equiv (ra_idx, dimensions)) | |
2543 { | |
2544 retval = *this; | |
2545 } | |
2546 else | |
2547 { | |
2548 dim_vector frozen_lengths_for_resize = frozen_lengths; | |
2549 | |
2550 frozen_lengths_for_resize.chop_trailing_singletons (); | |
2551 | |
2552 retval.resize (frozen_lengths_for_resize); | |
2553 | |
2554 octave_idx_type n = retval.length (); | |
2555 | |
2556 Array<octave_idx_type> result_idx (ra_idx.length (), 0); | |
2557 | |
2558 Array<octave_idx_type> elt_idx; | |
2559 | |
2560 for (octave_idx_type i = 0; i < n; i++) | |
2561 { | |
2562 elt_idx = get_elt_idx (ra_idx, result_idx); | |
2563 | |
2564 octave_idx_type numelem_elt = get_scalar_idx (elt_idx, new_dims); | |
2565 | |
2566 if (numelem_elt >= length () || numelem_elt < 0) | |
2567 retval.elem (i) = rfv; | |
2568 else | |
2569 retval.elem (i) = elem (numelem_elt); | |
2570 | |
2571 increment_index (result_idx, frozen_lengths); | |
2572 | |
2573 } | |
2574 } | |
2575 } | |
2576 | |
2577 return retval; | |
2578 } | 1841 } |
2579 | 1842 |
2580 template <class T> | 1843 template <class T> |
2581 bool | 1844 bool |
2582 ascending_compare (T a, T b) | 1845 ascending_compare (T a, T b) |
2849 } | 2112 } |
2850 | 2113 |
2851 if (nnr == 1) | 2114 if (nnr == 1) |
2852 { | 2115 { |
2853 octave_idx_type n = nnc + std::abs (k); | 2116 octave_idx_type n = nnc + std::abs (k); |
2854 d = Array<T> (dim_vector (n, n), resize_fill_value (T ())); | 2117 d = Array<T> (dim_vector (n, n), resize_fill_value ()); |
2855 | 2118 |
2856 for (octave_idx_type i = 0; i < nnc; i++) | 2119 for (octave_idx_type i = 0; i < nnc; i++) |
2857 d.xelem (i+roff, i+coff) = elem (0, i); | 2120 d.xelem (i+roff, i+coff) = elem (0, i); |
2858 } | 2121 } |
2859 else | 2122 else |
2860 { | 2123 { |
2861 octave_idx_type n = nnr + std::abs (k); | 2124 octave_idx_type n = nnr + std::abs (k); |
2862 d = Array<T> (dim_vector (n, n), resize_fill_value (T ())); | 2125 d = Array<T> (dim_vector (n, n), resize_fill_value ()); |
2863 | 2126 |
2864 for (octave_idx_type i = 0; i < nnr; i++) | 2127 for (octave_idx_type i = 0; i < nnr; i++) |
2865 d.xelem (i+roff, i+coff) = elem (i, 0); | 2128 d.xelem (i+roff, i+coff) = elem (i, 0); |
2866 } | 2129 } |
2867 } | 2130 } |
2868 } | 2131 } |
2869 | 2132 |
2870 return d; | 2133 return d; |
2871 } | |
2872 | |
2873 // FIXME -- this is a mess. | |
2874 | |
2875 template <class LT, class RT> | |
2876 int | |
2877 assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
2878 { | |
2879 int n_idx = lhs.index_count (); | |
2880 | |
2881 // kluge... | |
2882 if (lhs.ndims () == 0) | |
2883 lhs.resize_no_fill (0, 0); | |
2884 | |
2885 return (lhs.ndims () == 2 | |
2886 && (n_idx == 1 | |
2887 || (n_idx < 3 | |
2888 && rhs.ndims () == 2 | |
2889 && rhs.rows () == 0 && rhs.columns () == 0))) | |
2890 ? assign2 (lhs, rhs, rfv) : assignN (lhs, rhs, rfv); | |
2891 } | |
2892 | |
2893 template <class LT, class RT> | |
2894 int | |
2895 assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
2896 { | |
2897 int retval = 1; | |
2898 | |
2899 idx_vector *tmp = lhs.get_idx (); | |
2900 | |
2901 idx_vector lhs_idx = tmp[0]; | |
2902 | |
2903 octave_idx_type lhs_len = lhs.length (); | |
2904 octave_idx_type rhs_len = rhs.length (); | |
2905 | |
2906 octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true); | |
2907 | |
2908 if (n != 0) | |
2909 { | |
2910 dim_vector lhs_dims = lhs.dims (); | |
2911 | |
2912 if (lhs_len != 0 | |
2913 || lhs_dims.all_zero () | |
2914 || (lhs_dims.length () == 2 && lhs_dims(0) < 2)) | |
2915 { | |
2916 if (rhs_len == n || rhs_len == 1) | |
2917 { | |
2918 lhs.make_unique (); | |
2919 | |
2920 octave_idx_type max_idx = lhs_idx.max () + 1; | |
2921 if (max_idx > lhs_len) | |
2922 lhs.resize_and_fill (max_idx, rfv); | |
2923 } | |
2924 | |
2925 if (rhs_len == n) | |
2926 { | |
2927 lhs.make_unique (); | |
2928 | |
2929 if (lhs_idx.is_colon ()) | |
2930 { | |
2931 for (octave_idx_type i = 0; i < n; i++) | |
2932 lhs.xelem (i) = rhs.elem (i); | |
2933 } | |
2934 else | |
2935 { | |
2936 for (octave_idx_type i = 0; i < n; i++) | |
2937 { | |
2938 octave_idx_type ii = lhs_idx.elem (i); | |
2939 lhs.xelem (ii) = rhs.elem (i); | |
2940 } | |
2941 } | |
2942 } | |
2943 else if (rhs_len == 1) | |
2944 { | |
2945 lhs.make_unique (); | |
2946 | |
2947 RT scalar = rhs.elem (0); | |
2948 | |
2949 if (lhs_idx.is_colon ()) | |
2950 { | |
2951 for (octave_idx_type i = 0; i < n; i++) | |
2952 lhs.xelem (i) = scalar; | |
2953 } | |
2954 else | |
2955 { | |
2956 for (octave_idx_type i = 0; i < n; i++) | |
2957 { | |
2958 octave_idx_type ii = lhs_idx.elem (i); | |
2959 lhs.xelem (ii) = scalar; | |
2960 } | |
2961 } | |
2962 } | |
2963 else | |
2964 { | |
2965 lhs.clear_index (); | |
2966 | |
2967 (*current_liboctave_error_handler) | |
2968 ("A(I) = X: X must be a scalar or a vector with same length as I"); | |
2969 | |
2970 retval = 0; | |
2971 } | |
2972 } | |
2973 else | |
2974 { | |
2975 lhs.clear_index (); | |
2976 | |
2977 (*current_liboctave_error_handler) | |
2978 ("A(I) = X: unable to resize A"); | |
2979 | |
2980 retval = 0; | |
2981 } | |
2982 } | |
2983 else if (lhs_idx.is_colon ()) | |
2984 { | |
2985 dim_vector lhs_dims = lhs.dims (); | |
2986 | |
2987 if (lhs_dims.all_zero ()) | |
2988 { | |
2989 lhs.make_unique (); | |
2990 | |
2991 lhs.resize_no_fill (rhs_len); | |
2992 | |
2993 for (octave_idx_type i = 0; i < rhs_len; i++) | |
2994 lhs.xelem (i) = rhs.elem (i); | |
2995 } | |
2996 else if (rhs_len != lhs_len) | |
2997 { | |
2998 lhs.clear_index (); | |
2999 | |
3000 (*current_liboctave_error_handler) | |
3001 ("A(:) = X: A must be the same size as X"); | |
3002 } | |
3003 } | |
3004 else if (! (rhs_len == 1 || rhs_len == 0)) | |
3005 { | |
3006 lhs.clear_index (); | |
3007 | |
3008 (*current_liboctave_error_handler) | |
3009 ("A([]) = X: X must also be an empty matrix or a scalar"); | |
3010 | |
3011 retval = 0; | |
3012 } | |
3013 | |
3014 lhs.clear_index (); | |
3015 | |
3016 return retval; | |
3017 } | |
3018 | |
3019 #define MAYBE_RESIZE_LHS \ | |
3020 do \ | |
3021 { \ | |
3022 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \ | |
3023 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \ | |
3024 \ | |
3025 octave_idx_type new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \ | |
3026 octave_idx_type new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \ | |
3027 \ | |
3028 lhs.resize_and_fill (new_nr, new_nc, rfv); \ | |
3029 } \ | |
3030 while (0) | |
3031 | |
3032 template <class LT, class RT> | |
3033 int | |
3034 assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
3035 { | |
3036 int retval = 1; | |
3037 | |
3038 int n_idx = lhs.index_count (); | |
3039 | |
3040 octave_idx_type lhs_nr = lhs.rows (); | |
3041 octave_idx_type lhs_nc = lhs.cols (); | |
3042 | |
3043 Array<RT> xrhs = rhs; | |
3044 | |
3045 octave_idx_type rhs_nr = xrhs.rows (); | |
3046 octave_idx_type rhs_nc = xrhs.cols (); | |
3047 | |
3048 if (xrhs.ndims () > 2) | |
3049 { | |
3050 xrhs = xrhs.squeeze (); | |
3051 | |
3052 dim_vector dv_tmp = xrhs.dims (); | |
3053 | |
3054 switch (dv_tmp.length ()) | |
3055 { | |
3056 case 1: | |
3057 // FIXME -- this case should be unnecessary, because | |
3058 // squeeze should always return an object with 2 dimensions. | |
3059 if (rhs_nr == 1) | |
3060 rhs_nc = dv_tmp.elem (0); | |
3061 break; | |
3062 | |
3063 case 2: | |
3064 rhs_nr = dv_tmp.elem (0); | |
3065 rhs_nc = dv_tmp.elem (1); | |
3066 break; | |
3067 | |
3068 default: | |
3069 lhs.clear_index (); | |
3070 (*current_liboctave_error_handler) | |
3071 ("Array<T>::assign2: Dimension mismatch"); | |
3072 return 0; | |
3073 } | |
3074 } | |
3075 | |
3076 bool rhs_is_scalar = rhs_nr == 1 && rhs_nc == 1; | |
3077 | |
3078 idx_vector *tmp = lhs.get_idx (); | |
3079 | |
3080 idx_vector idx_i; | |
3081 idx_vector idx_j; | |
3082 | |
3083 if (n_idx > 1) | |
3084 idx_j = tmp[1]; | |
3085 | |
3086 if (n_idx > 0) | |
3087 idx_i = tmp[0]; | |
3088 | |
3089 if (n_idx == 2) | |
3090 { | |
3091 octave_idx_type n = idx_i.freeze (lhs_nr, "row", true); | |
3092 octave_idx_type m = idx_j.freeze (lhs_nc, "column", true); | |
3093 | |
3094 int idx_i_is_colon = idx_i.is_colon (); | |
3095 int idx_j_is_colon = idx_j.is_colon (); | |
3096 | |
3097 if (lhs_nr == 0 && lhs_nc == 0) | |
3098 { | |
3099 if (idx_i_is_colon) | |
3100 n = rhs_nr; | |
3101 | |
3102 if (idx_j_is_colon) | |
3103 m = rhs_nc; | |
3104 } | |
3105 | |
3106 if (idx_i && idx_j) | |
3107 { | |
3108 if (rhs_is_scalar && n >= 0 && m >= 0) | |
3109 { | |
3110 // No need to do anything if either of the indices | |
3111 // are empty. | |
3112 | |
3113 if (n > 0 && m > 0) | |
3114 { | |
3115 lhs.make_unique (); | |
3116 | |
3117 MAYBE_RESIZE_LHS; | |
3118 | |
3119 RT scalar = xrhs.elem (0, 0); | |
3120 | |
3121 for (octave_idx_type j = 0; j < m; j++) | |
3122 { | |
3123 octave_idx_type jj = idx_j.elem (j); | |
3124 for (octave_idx_type i = 0; i < n; i++) | |
3125 { | |
3126 octave_idx_type ii = idx_i.elem (i); | |
3127 lhs.xelem (ii, jj) = scalar; | |
3128 } | |
3129 } | |
3130 } | |
3131 } | |
3132 else if ((n == 1 || m == 1) | |
3133 && (rhs_nr == 1 || rhs_nc == 1) | |
3134 && n * m == rhs_nr * rhs_nc) | |
3135 { | |
3136 lhs.make_unique (); | |
3137 | |
3138 MAYBE_RESIZE_LHS; | |
3139 | |
3140 if (n > 0 && m > 0) | |
3141 { | |
3142 octave_idx_type k = 0; | |
3143 | |
3144 for (octave_idx_type j = 0; j < m; j++) | |
3145 { | |
3146 octave_idx_type jj = idx_j.elem (j); | |
3147 for (octave_idx_type i = 0; i < n; i++) | |
3148 { | |
3149 octave_idx_type ii = idx_i.elem (i); | |
3150 lhs.xelem (ii, jj) = xrhs.elem (k++); | |
3151 } | |
3152 } | |
3153 } | |
3154 } | |
3155 else if (n == rhs_nr && m == rhs_nc) | |
3156 { | |
3157 lhs.make_unique (); | |
3158 | |
3159 MAYBE_RESIZE_LHS; | |
3160 | |
3161 if (n > 0 && m > 0) | |
3162 { | |
3163 for (octave_idx_type j = 0; j < m; j++) | |
3164 { | |
3165 octave_idx_type jj = idx_j.elem (j); | |
3166 for (octave_idx_type i = 0; i < n; i++) | |
3167 { | |
3168 octave_idx_type ii = idx_i.elem (i); | |
3169 lhs.xelem (ii, jj) = xrhs.elem (i, j); | |
3170 } | |
3171 } | |
3172 } | |
3173 } | |
3174 else if (n == 0 && m == 0) | |
3175 { | |
3176 if (! (rhs_is_scalar || (rhs_nr == 0 || rhs_nc == 0))) | |
3177 { | |
3178 lhs.clear_index (); | |
3179 | |
3180 (*current_liboctave_error_handler) | |
3181 ("A([], []) = X: X must be an empty matrix or a scalar"); | |
3182 | |
3183 retval = 0; | |
3184 } | |
3185 } | |
3186 else | |
3187 { | |
3188 lhs.clear_index (); | |
3189 | |
3190 (*current_liboctave_error_handler) | |
3191 ("A(I, J) = X: X must be a scalar or the number of elements in I must match the number of rows in X and the number of elements in J must match the number of columns in X"); | |
3192 | |
3193 retval = 0; | |
3194 } | |
3195 } | |
3196 // idx_vector::freeze() printed an error message for us. | |
3197 } | |
3198 else if (n_idx == 1) | |
3199 { | |
3200 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; | |
3201 | |
3202 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) | |
3203 { | |
3204 octave_idx_type lhs_len = lhs.length (); | |
3205 | |
3206 idx_i.freeze (lhs_len, 0, true); | |
3207 | |
3208 if (idx_i) | |
3209 { | |
3210 if (lhs_is_empty | |
3211 && idx_i.is_colon () | |
3212 && ! (rhs_nr == 1 || rhs_nc == 1)) | |
3213 { | |
3214 (*current_liboctave_warning_with_id_handler) | |
3215 ("Octave:fortran-indexing", | |
3216 "A(:) = X: X is not a vector or scalar"); | |
3217 } | |
3218 else | |
3219 { | |
3220 octave_idx_type idx_nr = idx_i.orig_rows (); | |
3221 octave_idx_type idx_nc = idx_i.orig_columns (); | |
3222 | |
3223 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) | |
3224 (*current_liboctave_warning_with_id_handler) | |
3225 ("Octave:fortran-indexing", | |
3226 "A(I) = X: X does not have same shape as I"); | |
3227 } | |
3228 | |
3229 if (assign1 (lhs, xrhs, rfv)) | |
3230 { | |
3231 octave_idx_type len = lhs.length (); | |
3232 | |
3233 if (len > 0) | |
3234 { | |
3235 // The following behavior is much simplified | |
3236 // over previous versions of Octave. It | |
3237 // seems to be compatible with Matlab. | |
3238 | |
3239 lhs.dimensions = dim_vector (1, lhs.length ()); | |
3240 } | |
3241 } | |
3242 else | |
3243 retval = 0; | |
3244 } | |
3245 // idx_vector::freeze() printed an error message for us. | |
3246 } | |
3247 else if (lhs_nr == 1) | |
3248 { | |
3249 idx_i.freeze (lhs_nc, "vector", true); | |
3250 | |
3251 if (idx_i) | |
3252 { | |
3253 if (assign1 (lhs, xrhs, rfv)) | |
3254 lhs.dimensions = dim_vector (1, lhs.length ()); | |
3255 else | |
3256 retval = 0; | |
3257 } | |
3258 // idx_vector::freeze() printed an error message for us. | |
3259 } | |
3260 else if (lhs_nc == 1) | |
3261 { | |
3262 idx_i.freeze (lhs_nr, "vector", true); | |
3263 | |
3264 if (idx_i) | |
3265 { | |
3266 if (assign1 (lhs, xrhs, rfv)) | |
3267 lhs.dimensions = dim_vector (lhs.length (), 1); | |
3268 else | |
3269 retval = 0; | |
3270 } | |
3271 // idx_vector::freeze() printed an error message for us. | |
3272 } | |
3273 else | |
3274 { | |
3275 if (! idx_i.is_colon ()) | |
3276 (*current_liboctave_warning_with_id_handler) | |
3277 ("Octave:fortran-indexing", "single index used for matrix"); | |
3278 | |
3279 octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); | |
3280 | |
3281 if (idx_i) | |
3282 { | |
3283 if (len == 0) | |
3284 { | |
3285 if (! (rhs_is_scalar || (rhs_nr == 0 || rhs_nc == 0))) | |
3286 { | |
3287 lhs.clear_index (); | |
3288 | |
3289 (*current_liboctave_error_handler) | |
3290 ("A([]) = X: X must be an empty matrix or scalar"); | |
3291 | |
3292 retval = 0; | |
3293 } | |
3294 } | |
3295 else if (len == rhs_nr * rhs_nc) | |
3296 { | |
3297 lhs.make_unique (); | |
3298 | |
3299 if (idx_i.is_colon ()) | |
3300 { | |
3301 for (octave_idx_type i = 0; i < len; i++) | |
3302 lhs.xelem (i) = xrhs.elem (i); | |
3303 } | |
3304 else | |
3305 { | |
3306 for (octave_idx_type i = 0; i < len; i++) | |
3307 { | |
3308 octave_idx_type ii = idx_i.elem (i); | |
3309 lhs.xelem (ii) = xrhs.elem (i); | |
3310 } | |
3311 } | |
3312 } | |
3313 else if (rhs_is_scalar) | |
3314 { | |
3315 lhs.make_unique (); | |
3316 | |
3317 RT scalar = rhs.elem (0, 0); | |
3318 | |
3319 if (idx_i.is_colon ()) | |
3320 { | |
3321 for (octave_idx_type i = 0; i < len; i++) | |
3322 lhs.xelem (i) = scalar; | |
3323 } | |
3324 else | |
3325 { | |
3326 for (octave_idx_type i = 0; i < len; i++) | |
3327 { | |
3328 octave_idx_type ii = idx_i.elem (i); | |
3329 lhs.xelem (ii) = scalar; | |
3330 } | |
3331 } | |
3332 } | |
3333 else | |
3334 { | |
3335 lhs.clear_index (); | |
3336 | |
3337 (*current_liboctave_error_handler) | |
3338 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); | |
3339 | |
3340 retval = 0; | |
3341 } | |
3342 } | |
3343 // idx_vector::freeze() printed an error message for us. | |
3344 } | |
3345 } | |
3346 else | |
3347 { | |
3348 (*current_liboctave_error_handler) | |
3349 ("invalid number of indices for matrix expression"); | |
3350 | |
3351 retval = 0; | |
3352 } | |
3353 | |
3354 lhs.clear_index (); | |
3355 | |
3356 return retval; | |
3357 } | |
3358 | |
3359 template <class LT, class RT> | |
3360 int | |
3361 assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
3362 { | |
3363 int retval = 1; | |
3364 | |
3365 dim_vector rhs_dims = rhs.dims (); | |
3366 | |
3367 octave_idx_type rhs_dims_len = rhs_dims.length (); | |
3368 | |
3369 bool rhs_is_scalar = is_scalar (rhs_dims); | |
3370 | |
3371 int n_idx = lhs.index_count (); | |
3372 | |
3373 idx_vector *idx_vex = lhs.get_idx (); | |
3374 | |
3375 Array<idx_vector> idx = conv_to_array (idx_vex, n_idx); | |
3376 | |
3377 if (n_idx == 0) | |
3378 { | |
3379 lhs.clear_index (); | |
3380 | |
3381 (*current_liboctave_error_handler) | |
3382 ("invalid number of indices for matrix expression"); | |
3383 | |
3384 retval = 0; | |
3385 } | |
3386 else if (n_idx == 1) | |
3387 { | |
3388 idx_vector iidx = idx(0); | |
3389 int iidx_is_colon = iidx.is_colon (); | |
3390 | |
3391 if (! iidx_is_colon) | |
3392 (*current_liboctave_warning_with_id_handler) | |
3393 ("Octave:fortran-indexing", "single index used for N-d array"); | |
3394 | |
3395 octave_idx_type lhs_len = lhs.length (); | |
3396 | |
3397 octave_idx_type len = iidx.freeze (lhs_len, "N-d arrray"); | |
3398 | |
3399 if (iidx) | |
3400 { | |
3401 if (len == 0) | |
3402 { | |
3403 if (! (rhs_dims.all_ones () || rhs_dims.any_zero ())) | |
3404 { | |
3405 lhs.clear_index (); | |
3406 | |
3407 (*current_liboctave_error_handler) | |
3408 ("A([]) = X: X must be an empty matrix or scalar"); | |
3409 | |
3410 retval = 0; | |
3411 } | |
3412 } | |
3413 else if (len == rhs.length ()) | |
3414 { | |
3415 lhs.make_unique (); | |
3416 | |
3417 if (iidx_is_colon) | |
3418 { | |
3419 for (octave_idx_type i = 0; i < len; i++) | |
3420 lhs.xelem (i) = rhs.elem (i); | |
3421 } | |
3422 else | |
3423 { | |
3424 for (octave_idx_type i = 0; i < len; i++) | |
3425 { | |
3426 octave_idx_type ii = iidx.elem (i); | |
3427 | |
3428 lhs.xelem (ii) = rhs.elem (i); | |
3429 } | |
3430 } | |
3431 } | |
3432 else if (rhs_is_scalar) | |
3433 { | |
3434 RT scalar = rhs.elem (0); | |
3435 | |
3436 lhs.make_unique (); | |
3437 | |
3438 if (iidx_is_colon) | |
3439 { | |
3440 for (octave_idx_type i = 0; i < len; i++) | |
3441 lhs.xelem (i) = scalar; | |
3442 } | |
3443 else | |
3444 { | |
3445 for (octave_idx_type i = 0; i < len; i++) | |
3446 { | |
3447 octave_idx_type ii = iidx.elem (i); | |
3448 | |
3449 lhs.xelem (ii) = scalar; | |
3450 } | |
3451 } | |
3452 } | |
3453 else | |
3454 { | |
3455 lhs.clear_index (); | |
3456 | |
3457 (*current_liboctave_error_handler) | |
3458 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); | |
3459 | |
3460 retval = 0; | |
3461 } | |
3462 | |
3463 // idx_vector::freeze() printed an error message for us. | |
3464 } | |
3465 } | |
3466 else | |
3467 { | |
3468 // Maybe expand to more dimensions. | |
3469 | |
3470 dim_vector lhs_dims = lhs.dims (); | |
3471 | |
3472 octave_idx_type lhs_dims_len = lhs_dims.length (); | |
3473 | |
3474 dim_vector final_lhs_dims = lhs_dims; | |
3475 | |
3476 dim_vector frozen_len; | |
3477 | |
3478 octave_idx_type orig_lhs_dims_len = lhs_dims_len; | |
3479 | |
3480 bool orig_empty = lhs_dims.all_zero (); | |
3481 | |
3482 if (n_idx < lhs_dims_len) | |
3483 { | |
3484 // Collapse dimensions beyond last index. Note that we | |
3485 // delay resizing LHS until we know that the assignment will | |
3486 // succeed. | |
3487 | |
3488 if (! (idx(n_idx-1).is_colon ())) | |
3489 (*current_liboctave_warning_with_id_handler) | |
3490 ("Octave:fortran-indexing", | |
3491 "fewer indices than dimensions for N-d array"); | |
3492 | |
3493 for (int i = n_idx; i < lhs_dims_len; i++) | |
3494 lhs_dims(n_idx-1) *= lhs_dims(i); | |
3495 | |
3496 lhs_dims.resize (n_idx); | |
3497 | |
3498 lhs_dims_len = lhs_dims.length (); | |
3499 } | |
3500 | |
3501 // Resize. | |
3502 | |
3503 dim_vector new_dims; | |
3504 new_dims.resize (n_idx); | |
3505 | |
3506 if (orig_empty) | |
3507 { | |
3508 if (rhs_is_scalar) | |
3509 { | |
3510 for (int i = 0; i < n_idx; i++) | |
3511 { | |
3512 if (idx(i).is_colon ()) | |
3513 new_dims(i) = 1; | |
3514 else | |
3515 new_dims(i) = idx(i).orig_empty () ? 0 : idx(i).max () + 1; | |
3516 } | |
3517 } | |
3518 else if (is_vector (rhs_dims)) | |
3519 { | |
3520 int ncolon = 0; | |
3521 int fcolon = 0; | |
3522 octave_idx_type new_dims_numel = 1; | |
3523 int new_dims_vec = 0; | |
3524 for (int i = 0; i < n_idx; i++) | |
3525 if (idx(i).is_colon ()) | |
3526 { | |
3527 ncolon ++; | |
3528 if (ncolon == 1) | |
3529 fcolon = i; | |
3530 } | |
3531 else | |
3532 { | |
3533 octave_idx_type cap = idx(i).capacity (); | |
3534 new_dims_numel *= cap; | |
3535 if (cap != 1) | |
3536 new_dims_vec ++; | |
3537 } | |
3538 | |
3539 if (ncolon == n_idx) | |
3540 { | |
3541 new_dims = rhs_dims; | |
3542 new_dims.resize (n_idx); | |
3543 for (int i = rhs_dims_len; i < n_idx; i++) | |
3544 new_dims (i) = 1; | |
3545 } | |
3546 else | |
3547 { | |
3548 octave_idx_type rhs_dims_numel = rhs_dims.numel (); | |
3549 | |
3550 for (int i = 0; i < n_idx; i++) | |
3551 new_dims(i) = idx(i).orig_empty () ? 0 : idx(i).max () + 1; | |
3552 | |
3553 if (new_dims_numel != rhs_dims_numel && | |
3554 ncolon > 0 && new_dims_numel == 1) | |
3555 { | |
3556 if (ncolon == rhs_dims_len) | |
3557 { | |
3558 int k = 0; | |
3559 for (int i = 0; i < n_idx; i++) | |
3560 if (idx(i).is_colon ()) | |
3561 new_dims (i) = rhs_dims (k++); | |
3562 } | |
3563 else | |
3564 new_dims (fcolon) = rhs_dims_numel; | |
3565 } | |
3566 else if (new_dims_numel != rhs_dims_numel || new_dims_vec > 1) | |
3567 { | |
3568 lhs.clear_index (); | |
3569 | |
3570 (*current_liboctave_error_handler) | |
3571 ("A(IDX-LIST) = RHS: mismatched index and RHS dimension"); | |
3572 return retval; | |
3573 } | |
3574 } | |
3575 } | |
3576 else | |
3577 { | |
3578 int k = 0; | |
3579 for (int i = 0; i < n_idx; i++) | |
3580 { | |
3581 if (idx(i).is_colon ()) | |
3582 { | |
3583 if (k < rhs_dims_len) | |
3584 new_dims(i) = rhs_dims(k++); | |
3585 else | |
3586 new_dims(i) = 1; | |
3587 } | |
3588 else | |
3589 { | |
3590 octave_idx_type nelem = idx(i).capacity (); | |
3591 | |
3592 if (nelem >= 1 | |
3593 && (k < rhs_dims_len && nelem == rhs_dims(k))) | |
3594 k++; | |
3595 else if (nelem != 1) | |
3596 { | |
3597 lhs.clear_index (); | |
3598 | |
3599 (*current_liboctave_error_handler) | |
3600 ("A(IDX-LIST) = RHS: mismatched index and RHS dimension"); | |
3601 return retval; | |
3602 } | |
3603 new_dims(i) = idx(i).orig_empty () ? 0 : | |
3604 idx(i).max () + 1; | |
3605 } | |
3606 } | |
3607 } | |
3608 } | |
3609 else | |
3610 { | |
3611 for (int i = 0; i < n_idx; i++) | |
3612 { | |
3613 // We didn't start out with all zero dimensions, so if | |
3614 // index is a colon, it refers to the current LHS | |
3615 // dimension. Otherwise, it is OK to enlarge to a | |
3616 // dimension given by the largest index, but if that | |
3617 // index is a colon the new dimension is singleton. | |
3618 | |
3619 if (i < lhs_dims_len | |
3620 && (idx(i).is_colon () | |
3621 || idx(i).orig_empty () | |
3622 || idx(i).max () < lhs_dims(i))) | |
3623 new_dims(i) = lhs_dims(i); | |
3624 else if (! idx(i).is_colon ()) | |
3625 new_dims(i) = idx(i).max () + 1; | |
3626 else | |
3627 new_dims(i) = 1; | |
3628 } | |
3629 } | |
3630 | |
3631 if (retval != 0) | |
3632 { | |
3633 if (! orig_empty | |
3634 && n_idx < orig_lhs_dims_len | |
3635 && new_dims(n_idx-1) != lhs_dims(n_idx-1)) | |
3636 { | |
3637 // We reshaped and the last dimension changed. This has to | |
3638 // be an error, because we don't know how to undo that | |
3639 // later... | |
3640 | |
3641 lhs.clear_index (); | |
3642 | |
3643 (*current_liboctave_error_handler) | |
3644 ("array index %d (= %d) for assignment requires invalid resizing operation", | |
3645 n_idx, new_dims(n_idx-1)); | |
3646 | |
3647 retval = 0; | |
3648 } | |
3649 else | |
3650 { | |
3651 // Determine final dimensions for LHS and reset the | |
3652 // current size of the LHS. Note that we delay actually | |
3653 // resizing LHS until we know that the assignment will | |
3654 // succeed. | |
3655 | |
3656 if (n_idx < orig_lhs_dims_len) | |
3657 { | |
3658 for (int i = 0; i < n_idx-1; i++) | |
3659 final_lhs_dims(i) = new_dims(i); | |
3660 } | |
3661 else | |
3662 final_lhs_dims = new_dims; | |
3663 | |
3664 lhs_dims_len = new_dims.length (); | |
3665 | |
3666 frozen_len = freeze (idx, new_dims, true); | |
3667 | |
3668 for (int i = 0; i < idx.length (); i++) | |
3669 { | |
3670 if (! idx(i)) | |
3671 { | |
3672 retval = 0; | |
3673 lhs.clear_index (); | |
3674 return retval; | |
3675 } | |
3676 } | |
3677 | |
3678 if (rhs_is_scalar) | |
3679 { | |
3680 lhs.make_unique (); | |
3681 | |
3682 if (n_idx < orig_lhs_dims_len) | |
3683 lhs = lhs.reshape (lhs_dims); | |
3684 | |
3685 lhs.resize_and_fill (new_dims, rfv); | |
3686 | |
3687 if (! final_lhs_dims.any_zero ()) | |
3688 { | |
3689 RT scalar = rhs.elem (0); | |
3690 | |
3691 if (n_idx == 1) | |
3692 { | |
3693 idx_vector iidx = idx(0); | |
3694 | |
3695 octave_idx_type len = frozen_len(0); | |
3696 | |
3697 if (iidx.is_colon ()) | |
3698 { | |
3699 for (octave_idx_type i = 0; i < len; i++) | |
3700 lhs.xelem (i) = scalar; | |
3701 } | |
3702 else | |
3703 { | |
3704 for (octave_idx_type i = 0; i < len; i++) | |
3705 { | |
3706 octave_idx_type ii = iidx.elem (i); | |
3707 | |
3708 lhs.xelem (ii) = scalar; | |
3709 } | |
3710 } | |
3711 } | |
3712 else if (lhs_dims_len == 2 && n_idx == 2) | |
3713 { | |
3714 idx_vector idx_i = idx(0); | |
3715 idx_vector idx_j = idx(1); | |
3716 | |
3717 octave_idx_type i_len = frozen_len(0); | |
3718 octave_idx_type j_len = frozen_len(1); | |
3719 | |
3720 if (idx_i.is_colon()) | |
3721 { | |
3722 for (octave_idx_type j = 0; j < j_len; j++) | |
3723 { | |
3724 octave_idx_type off = new_dims (0) * | |
3725 idx_j.elem (j); | |
3726 for (octave_idx_type i = 0; i < i_len; i++) | |
3727 lhs.xelem (i + off) = scalar; | |
3728 } | |
3729 } | |
3730 else | |
3731 { | |
3732 for (octave_idx_type j = 0; j < j_len; j++) | |
3733 { | |
3734 octave_idx_type off = new_dims (0) * | |
3735 idx_j.elem (j); | |
3736 for (octave_idx_type i = 0; i < i_len; i++) | |
3737 { | |
3738 octave_idx_type ii = idx_i.elem (i); | |
3739 lhs.xelem (ii + off) = scalar; | |
3740 } | |
3741 } | |
3742 } | |
3743 } | |
3744 else | |
3745 { | |
3746 octave_idx_type n = Array<LT>::get_size (frozen_len); | |
3747 | |
3748 Array<octave_idx_type> result_idx (lhs_dims_len, 0); | |
3749 | |
3750 for (octave_idx_type i = 0; i < n; i++) | |
3751 { | |
3752 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); | |
3753 | |
3754 lhs.xelem (elt_idx) = scalar; | |
3755 | |
3756 increment_index (result_idx, frozen_len); | |
3757 } | |
3758 } | |
3759 } | |
3760 } | |
3761 else | |
3762 { | |
3763 // RHS is matrix or higher dimension. | |
3764 | |
3765 octave_idx_type n = Array<LT>::get_size (frozen_len); | |
3766 | |
3767 if (n != rhs.numel ()) | |
3768 { | |
3769 lhs.clear_index (); | |
3770 | |
3771 (*current_liboctave_error_handler) | |
3772 ("A(IDX-LIST) = X: X must be a scalar or size of X must equal number of elements indexed by IDX-LIST"); | |
3773 | |
3774 retval = 0; | |
3775 } | |
3776 else | |
3777 { | |
3778 lhs.make_unique (); | |
3779 | |
3780 if (n_idx < orig_lhs_dims_len) | |
3781 lhs = lhs.reshape (lhs_dims); | |
3782 | |
3783 lhs.resize_and_fill (new_dims, rfv); | |
3784 | |
3785 if (! final_lhs_dims.any_zero ()) | |
3786 { | |
3787 if (n_idx == 1) | |
3788 { | |
3789 idx_vector iidx = idx(0); | |
3790 | |
3791 octave_idx_type len = frozen_len(0); | |
3792 | |
3793 if (iidx.is_colon ()) | |
3794 { | |
3795 for (octave_idx_type i = 0; i < len; i++) | |
3796 lhs.xelem (i) = rhs.elem (i); | |
3797 } | |
3798 else | |
3799 { | |
3800 for (octave_idx_type i = 0; i < len; i++) | |
3801 { | |
3802 octave_idx_type ii = iidx.elem (i); | |
3803 | |
3804 lhs.xelem (ii) = rhs.elem (i); | |
3805 } | |
3806 } | |
3807 } | |
3808 else if (lhs_dims_len == 2 && n_idx == 2) | |
3809 { | |
3810 idx_vector idx_i = idx(0); | |
3811 idx_vector idx_j = idx(1); | |
3812 | |
3813 octave_idx_type i_len = frozen_len(0); | |
3814 octave_idx_type j_len = frozen_len(1); | |
3815 octave_idx_type k = 0; | |
3816 | |
3817 if (idx_i.is_colon()) | |
3818 { | |
3819 for (octave_idx_type j = 0; j < j_len; j++) | |
3820 { | |
3821 octave_idx_type off = new_dims (0) * | |
3822 idx_j.elem (j); | |
3823 for (octave_idx_type i = 0; | |
3824 i < i_len; i++) | |
3825 lhs.xelem (i + off) = rhs.elem (k++); | |
3826 } | |
3827 } | |
3828 else | |
3829 { | |
3830 for (octave_idx_type j = 0; j < j_len; j++) | |
3831 { | |
3832 octave_idx_type off = new_dims (0) * | |
3833 idx_j.elem (j); | |
3834 for (octave_idx_type i = 0; i < i_len; i++) | |
3835 { | |
3836 octave_idx_type ii = idx_i.elem (i); | |
3837 lhs.xelem (ii + off) = rhs.elem (k++); | |
3838 } | |
3839 } | |
3840 } | |
3841 | |
3842 } | |
3843 else | |
3844 { | |
3845 n = Array<LT>::get_size (frozen_len); | |
3846 | |
3847 Array<octave_idx_type> result_idx (lhs_dims_len, 0); | |
3848 | |
3849 for (octave_idx_type i = 0; i < n; i++) | |
3850 { | |
3851 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); | |
3852 | |
3853 lhs.xelem (elt_idx) = rhs.elem (i); | |
3854 | |
3855 increment_index (result_idx, frozen_len); | |
3856 } | |
3857 } | |
3858 } | |
3859 } | |
3860 } | |
3861 } | |
3862 } | |
3863 | |
3864 lhs.clear_index (); | |
3865 | |
3866 if (retval != 0) | |
3867 lhs = lhs.reshape (final_lhs_dims); | |
3868 } | |
3869 | |
3870 if (retval != 0) | |
3871 lhs.chop_trailing_singletons (); | |
3872 | |
3873 lhs.clear_index (); | |
3874 | |
3875 return retval; | |
3876 } | 2134 } |
3877 | 2135 |
3878 template <class T> | 2136 template <class T> |
3879 void | 2137 void |
3880 Array<T>::print_info (std::ostream& os, const std::string& prefix) const | 2138 Array<T>::print_info (std::ostream& os, const std::string& prefix) const |