Mercurial > hg > octave-nkf
comparison scripts/statistics/models/logistic_regression_likelihood.m @ 3454:d8b731d3f7a3
[project @ 2000-01-18 10:13:31 by jwe]
author | jwe |
---|---|
date | Tue, 18 Jan 2000 10:13:39 +0000 |
parents | f8dde1807dee |
children | 434790acb067 |
comparison
equal
deleted
inserted
replaced
3453:71d2e09c15a2 | 3454:d8b731d3f7a3 |
---|---|
12 ## | 12 ## |
13 ## You should have received a copy of the GNU General Public License | 13 ## You should have received a copy of the GNU General Public License |
14 ## along with this file. If not, write to the Free Software Foundation, | 14 ## along with this file. If not, write to the Free Software Foundation, |
15 ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 15 ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
16 | 16 |
17 ## -*- texinfo -*- | |
18 ## @deftypefn {Function File} {[@var{g}, @var{g1}, @var{p}, @var{dev}] =} logistic_regression_likelihood (@var{y}, @var{x}, @var{beta}, @var{z}, @var{z1}) | |
17 ## Calculates likelihood for the ordinal logistic regression model. | 19 ## Calculates likelihood for the ordinal logistic regression model. |
18 ## Called by logistic_regression. | 20 ## Called by logistic_regression. |
21 ## @end deftypefn | |
19 | 22 |
20 ## Author: Gordon K. Smyth <gks@maths.uq.oz.au> | 23 ## Author: Gordon K. Smyth <gks@maths.uq.oz.au> |
21 ## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at> | 24 ## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at> |
22 ## Description: Likelihood in logistic regression | 25 ## Description: Likelihood in logistic regression |
23 | 26 |
24 function [g, g1, p, dev] ... | 27 function [g, g1, p, dev] = logistic_regression_likelihood (y, x, beta, z, z1) |
25 = logistic_regression_likelihood (y, x, beta, z, z1) | |
26 | 28 |
27 e = exp ([z, x] * beta); e1 = exp ([z1, x] * beta); | 29 e = exp ([z, x] * beta); e1 = exp ([z1, x] * beta); |
28 g = e ./ (1 + e); g1 = e1 ./ (1 + e1); | 30 g = e ./ (1 + e); g1 = e1 ./ (1 + e1); |
29 g = max (y == max (y), g); g1 = min (y > min(y), g1); | 31 g = max (y == max (y), g); g1 = min (y > min(y), g1); |
30 | 32 |