diff libcruft/blas/sgemm.f @ 4347:024ef171aec3

[project @ 2003-02-20 23:31:46 by jwe]
author jwe
date Thu, 20 Feb 2003 23:32:25 +0000
parents
children 82be108cc558
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/libcruft/blas/sgemm.f
@@ -0,0 +1,313 @@
+      SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
+     $                   BETA, C, LDC )
+*     .. Scalar Arguments ..
+      CHARACTER*1        TRANSA, TRANSB
+      INTEGER            M, N, K, LDA, LDB, LDC
+      REAL               ALPHA, BETA
+*     .. Array Arguments ..
+      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  SGEMM  performs one of the matrix-matrix operations
+*
+*     C := alpha*op( A )*op( B ) + beta*C,
+*
+*  where  op( X ) is one of
+*
+*     op( X ) = X   or   op( X ) = X',
+*
+*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
+*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
+*
+*  Parameters
+*  ==========
+*
+*  TRANSA - CHARACTER*1.
+*           On entry, TRANSA specifies the form of op( A ) to be used in
+*           the matrix multiplication as follows:
+*
+*              TRANSA = 'N' or 'n',  op( A ) = A.
+*
+*              TRANSA = 'T' or 't',  op( A ) = A'.
+*
+*              TRANSA = 'C' or 'c',  op( A ) = A'.
+*
+*           Unchanged on exit.
+*
+*  TRANSB - CHARACTER*1.
+*           On entry, TRANSB specifies the form of op( B ) to be used in
+*           the matrix multiplication as follows:
+*
+*              TRANSB = 'N' or 'n',  op( B ) = B.
+*
+*              TRANSB = 'T' or 't',  op( B ) = B'.
+*
+*              TRANSB = 'C' or 'c',  op( B ) = B'.
+*
+*           Unchanged on exit.
+*
+*  M      - INTEGER.
+*           On entry,  M  specifies  the number  of rows  of the  matrix
+*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
+*           Unchanged on exit.
+*
+*  N      - INTEGER.
+*           On entry,  N  specifies the number  of columns of the matrix
+*           op( B ) and the number of columns of the matrix C. N must be
+*           at least zero.
+*           Unchanged on exit.
+*
+*  K      - INTEGER.
+*           On entry,  K  specifies  the number of columns of the matrix
+*           op( A ) and the number of rows of the matrix op( B ). K must
+*           be at least  zero.
+*           Unchanged on exit.
+*
+*  ALPHA  - REAL            .
+*           On entry, ALPHA specifies the scalar alpha.
+*           Unchanged on exit.
+*
+*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
+*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
+*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
+*           part of the array  A  must contain the matrix  A,  otherwise
+*           the leading  k by m  part of the array  A  must contain  the
+*           matrix A.
+*           Unchanged on exit.
+*
+*  LDA    - INTEGER.
+*           On entry, LDA specifies the first dimension of A as declared
+*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
+*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
+*           least  max( 1, k ).
+*           Unchanged on exit.
+*
+*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
+*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
+*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
+*           part of the array  B  must contain the matrix  B,  otherwise
+*           the leading  n by k  part of the array  B  must contain  the
+*           matrix B.
+*           Unchanged on exit.
+*
+*  LDB    - INTEGER.
+*           On entry, LDB specifies the first dimension of B as declared
+*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
+*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
+*           least  max( 1, n ).
+*           Unchanged on exit.
+*
+*  BETA   - REAL            .
+*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
+*           supplied as zero then C need not be set on input.
+*           Unchanged on exit.
+*
+*  C      - REAL             array of DIMENSION ( LDC, n ).
+*           Before entry, the leading  m by n  part of the array  C must
+*           contain the matrix  C,  except when  beta  is zero, in which
+*           case C need not be set on entry.
+*           On exit, the array  C  is overwritten by the  m by n  matrix
+*           ( alpha*op( A )*op( B ) + beta*C ).
+*
+*  LDC    - INTEGER.
+*           On entry, LDC specifies the first dimension of C as declared
+*           in  the  calling  (sub)  program.   LDC  must  be  at  least
+*           max( 1, m ).
+*           Unchanged on exit.
+*
+*
+*  Level 3 Blas routine.
+*
+*  -- Written on 8-February-1989.
+*     Jack Dongarra, Argonne National Laboratory.
+*     Iain Duff, AERE Harwell.
+*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
+*     Sven Hammarling, Numerical Algorithms Group Ltd.
+*
+*
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX
+*     .. Local Scalars ..
+      LOGICAL            NOTA, NOTB
+      INTEGER            I, INFO, J, L, NCOLA, NROWA, NROWB
+      REAL               TEMP
+*     .. Parameters ..
+      REAL               ONE         , ZERO
+      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
+*     ..
+*     .. Executable Statements ..
+*
+*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
+*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
+*     and  columns of  A  and the  number of  rows  of  B  respectively.
+*
+      NOTA  = LSAME( TRANSA, 'N' )
+      NOTB  = LSAME( TRANSB, 'N' )
+      IF( NOTA )THEN
+         NROWA = M
+         NCOLA = K
+      ELSE
+         NROWA = K
+         NCOLA = M
+      END IF
+      IF( NOTB )THEN
+         NROWB = K
+      ELSE
+         NROWB = N
+      END IF
+*
+*     Test the input parameters.
+*
+      INFO = 0
+      IF(      ( .NOT.NOTA                 ).AND.
+     $         ( .NOT.LSAME( TRANSA, 'C' ) ).AND.
+     $         ( .NOT.LSAME( TRANSA, 'T' ) )      )THEN
+         INFO = 1
+      ELSE IF( ( .NOT.NOTB                 ).AND.
+     $         ( .NOT.LSAME( TRANSB, 'C' ) ).AND.
+     $         ( .NOT.LSAME( TRANSB, 'T' ) )      )THEN
+         INFO = 2
+      ELSE IF( M  .LT.0               )THEN
+         INFO = 3
+      ELSE IF( N  .LT.0               )THEN
+         INFO = 4
+      ELSE IF( K  .LT.0               )THEN
+         INFO = 5
+      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
+         INFO = 8
+      ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
+         INFO = 10
+      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
+         INFO = 13
+      END IF
+      IF( INFO.NE.0 )THEN
+         CALL XERBLA( 'SGEMM ', INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible.
+*
+      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
+     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
+     $   RETURN
+*
+*     And if  alpha.eq.zero.
+*
+      IF( ALPHA.EQ.ZERO )THEN
+         IF( BETA.EQ.ZERO )THEN
+            DO 20, J = 1, N
+               DO 10, I = 1, M
+                  C( I, J ) = ZERO
+   10          CONTINUE
+   20       CONTINUE
+         ELSE
+            DO 40, J = 1, N
+               DO 30, I = 1, M
+                  C( I, J ) = BETA*C( I, J )
+   30          CONTINUE
+   40       CONTINUE
+         END IF
+         RETURN
+      END IF
+*
+*     Start the operations.
+*
+      IF( NOTB )THEN
+         IF( NOTA )THEN
+*
+*           Form  C := alpha*A*B + beta*C.
+*
+            DO 90, J = 1, N
+               IF( BETA.EQ.ZERO )THEN
+                  DO 50, I = 1, M
+                     C( I, J ) = ZERO
+   50             CONTINUE
+               ELSE IF( BETA.NE.ONE )THEN
+                  DO 60, I = 1, M
+                     C( I, J ) = BETA*C( I, J )
+   60             CONTINUE
+               END IF
+               DO 80, L = 1, K
+                  IF( B( L, J ).NE.ZERO )THEN
+                     TEMP = ALPHA*B( L, J )
+                     DO 70, I = 1, M
+                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
+   70                CONTINUE
+                  END IF
+   80          CONTINUE
+   90       CONTINUE
+         ELSE
+*
+*           Form  C := alpha*A'*B + beta*C
+*
+            DO 120, J = 1, N
+               DO 110, I = 1, M
+                  TEMP = ZERO
+                  DO 100, L = 1, K
+                     TEMP = TEMP + A( L, I )*B( L, J )
+  100             CONTINUE
+                  IF( BETA.EQ.ZERO )THEN
+                     C( I, J ) = ALPHA*TEMP
+                  ELSE
+                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
+                  END IF
+  110          CONTINUE
+  120       CONTINUE
+         END IF
+      ELSE
+         IF( NOTA )THEN
+*
+*           Form  C := alpha*A*B' + beta*C
+*
+            DO 170, J = 1, N
+               IF( BETA.EQ.ZERO )THEN
+                  DO 130, I = 1, M
+                     C( I, J ) = ZERO
+  130             CONTINUE
+               ELSE IF( BETA.NE.ONE )THEN
+                  DO 140, I = 1, M
+                     C( I, J ) = BETA*C( I, J )
+  140             CONTINUE
+               END IF
+               DO 160, L = 1, K
+                  IF( B( J, L ).NE.ZERO )THEN
+                     TEMP = ALPHA*B( J, L )
+                     DO 150, I = 1, M
+                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
+  150                CONTINUE
+                  END IF
+  160          CONTINUE
+  170       CONTINUE
+         ELSE
+*
+*           Form  C := alpha*A'*B' + beta*C
+*
+            DO 200, J = 1, N
+               DO 190, I = 1, M
+                  TEMP = ZERO
+                  DO 180, L = 1, K
+                     TEMP = TEMP + A( L, I )*B( J, L )
+  180             CONTINUE
+                  IF( BETA.EQ.ZERO )THEN
+                     C( I, J ) = ALPHA*TEMP
+                  ELSE
+                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
+                  END IF
+  190          CONTINUE
+  200       CONTINUE
+         END IF
+      END IF
+*
+      RETURN
+*
+*     End of SGEMM .
+*
+      END