Mercurial > hg > octave-nkf
diff scripts/signal/hamming.m @ 20031:26fb4bfa4193
blackman, hamming, hanning: Add periodic window option (bug #43305)
* blackman.m, hamming.m, hanning.m: Add Matlab compatible option to
return the periodic form of the window. Add %!tests for new behavior.
author | Mike Miller <mtmiller@ieee.org> |
---|---|
date | Sun, 22 Feb 2015 17:39:29 -0500 |
parents | 4197fc428c7d |
children | d209fbae38ae |
line wrap: on
line diff
--- a/scripts/signal/hamming.m +++ b/scripts/signal/hamming.m @@ -17,9 +17,16 @@ ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- -## @deftypefn {Function File} {} hamming (@var{m}) +## @deftypefn {Function File} {} hamming (@var{m}) +## @deftypefnx {Function File} {} hamming (@var{m}, "periodic") +## @deftypefnx {Function File} {} hamming (@var{m}, "symmetric") ## Return the filter coefficients of a Hamming window of length @var{m}. ## +## If the optional argument @qcode{"periodic"} is given, the periodic form +## of the window is returned. This is equivalent to the window of length +## @var{m}+1 with the last coefficient removed. The optional argument +## @qcode{"symmetric"} is equivalent to not specifying a second argument. +## ## For a definition of the Hamming window, see e.g., ## @nospell{A.V. Oppenheim & R. W. Schafer}, ## @cite{Discrete-Time Signal Processing}. @@ -28,23 +35,41 @@ ## Author: AW <Andreas.Weingessel@ci.tuwien.ac.at> ## Description: Coefficients of the Hamming window -function c = hamming (m) +function c = hamming (m, opt) - if (nargin != 1) + if (nargin < 1 || nargin > 2) print_usage (); endif if (! (isscalar (m) && (m == fix (m)) && (m > 0))) - error ("hamming: M has to be an integer > 0"); + error ("hamming: M must be a positive integer"); + endif + + periodic = false; + if (nargin == 2) + switch (opt) + case "periodic" + periodic = true; + case "symmetric" + ## Default option, same as no option specified. + otherwise + error ('hamming: window type must be either "periodic" or "symmetric"'); + endswitch endif if (m == 1) c = 1; else - m = m - 1; + if (! periodic) + m = m - 1; + endif c = 0.54 - 0.46 * cos (2 * pi * (0:m)' / m); endif + if (periodic) + c = c(1:end-1); + endif + endfunction @@ -57,8 +82,16 @@ %! A = hamming (N); %! assert (A (ceil (N/2)), 1); +%!assert (hamming (15), hamming (15, "symmetric")); +%!assert (hamming (16)(1:15), hamming (15, "periodic")); +%!test +%! N = 16; +%! A = hamming (N, "periodic"); +%! assert (A (N/2 + 1), 1); + %!error hamming () %!error hamming (0.5) %!error hamming (-1) %!error hamming (ones (1,4)) +%!error hamming (1, "invalid");