Mercurial > hg > octave-nkf
diff src/data.cc @ 3321:6923abb04e16
[project @ 1999-10-26 18:15:30 by jwe]
author | jwe |
---|---|
date | Tue, 26 Oct 1999 18:15:41 +0000 |
parents | b6c74a0772b5 |
children | 8c6b4de3bdc8 |
line wrap: on
line diff
--- a/src/data.cc +++ b/src/data.cc @@ -797,7 +797,11 @@ } DEFUN (is_matrix, args, , - "is_matrix (x): return nonzero if x can be considered a matrix") + "-*- texinfo -*-\n\ +@deftypefn {Usage} {} is_matrix (@var{a})\n\ +Return 1 if @var{a} is a matrix. Otherwise, return 0.\n\ +@end deftypefn\n\ +") { double retval = 0.0; @@ -1186,17 +1190,65 @@ void symbols_of_data (void) { + +#define IMAGINARY_DOC_STRING "-*- texinfo -*-\n\ +@defvr {Built-in Variable} I\n\ +@defvrx {Built-in Variable} J\n\ +@defvrx {Built-in Variable} i\n\ +@defvrx {Built-in Variable} j\n\ +A pure imaginary number, defined as\n\ +@iftex\n\ +@tex\n\ + $\\sqrt{-1}$.\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ + @code{sqrt (-1)}.\n\ +@end ifinfo\n\ +The @code{I} and @code{J} forms are true constants, and cannot be\n\ +modified. The @code{i} and @code{j} forms are like ordinary variables,\n\ +and may be used for other purposes. However, unlike other variables,\n\ +they once again assume their special predefined values if they are\n\ +cleared @xref{Status of Variables}.\n\ +@end defvr" + +#define INFINITY_DOC_STRING "-*- texinfo -*-\n\ +@defvr {Built-in Variable} Inf\n\ +@defvrx {Built-in Variable} inf\n\ +Infinity. This is the result of an operation like 1/0, or an operation\n\ +that results in a floating point overflow.\n\ +@end defvr" + +#define NAN_DOC_STRING "-*- texinfo -*-\n\ +@defvr {Built-in Variable} NaN\n\ +@defvrx {Built-in Variable} nan\n\ +Not a number. This is the result of an operation like\n\ +@iftex\n\ +@tex\n\ +$0/0$, or $\\infty - \\infty$,\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ +0/0, or @samp{Inf - Inf},\n\ +@end ifinfo\n\ +or any operation with a NaN.\n\ +\n\ +Note that NaN always compares not equal to NaN. This behavior is\n\ +specified by the IEEE standard for floating point arithmetic. To\n\ +find NaN values, you must use the @code{isnan} function.\n\ +@end defvr" + DEFCONST (I, Complex (0.0, 1.0), - "sqrt (-1)"); + IMAGINARY_DOC_STRING); DEFCONST (Inf, octave_Inf, - "infinity"); + INFINITY_DOC_STRING); DEFCONST (J, Complex (0.0, 1.0), - "sqrt (-1)"); + IMAGINARY_DOC_STRING); DEFCONST (NaN, octave_NaN, - "not a number"); + NAN_DOC_STRING); #if defined (M_E) double e_val = M_E; @@ -1205,25 +1257,60 @@ #endif DEFCONST (e, e_val, - "exp (1)"); + "-*- texinfo -*-\n\ +@defvr {Built-in Variable} e\n\ +The base of natural logarithms. The constant\n\ +@iftex\n\ +@tex\n\ + $e$\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ + @var{e}\n\ +@end ifinfo\n\ + satisfies the equation\n\ +@iftex\n\ +@tex\n\ + $\\log (e) = 1$.\n\ +@end tex\n\ +@end iftex\n\ +@ifinfo\n\ + @code{log} (@var{e}) = 1.\n\ +@end ifinfo\n\ +@end defvr"); DEFCONST (eps, DBL_EPSILON, - "machine precision"); + "-*- texinfo -*-\n\ +@defvr {Built-in Variable} eps\n\ +The machine precision. More precisely, @code{eps} is the largest\n\ +relative spacing between any two adjacent numbers in the machine's\n\ +floating point system. This number is obviously system-dependent. On\n\ +machines that support 64 bit IEEE floating point arithmetic, @code{eps}\n\ +is approximately\n\ +@ifinfo\n\ + 2.2204e-16.\n\ +@end ifinfo\n\ +@iftex\n\ +@tex\n\ + $2.2204\\times10^{-16}$.\n\ +@end tex\n\ +@end iftex\n\ +@end defvr"); DEFCONST (false, false, "logical false value"); DEFCONST (i, Complex (0.0, 1.0), - "sqrt (-1)"); + IMAGINARY_DOC_STRING); DEFCONST (inf, octave_Inf, - "infinity"); + INFINITY_DOC_STRING); DEFCONST (j, Complex (0.0, 1.0), - "sqrt (-1)"); + IMAGINARY_DOC_STRING); DEFCONST (nan, octave_NaN, - "not a number"); + NAN_DOC_STRING); #if defined (M_PI) double pi_val = M_PI; @@ -1232,13 +1319,43 @@ #endif DEFCONST (pi, pi_val, - "ratio of the circumference of a circle to its diameter"); + "-*- texinfo -*-\n\ +@defvr {Built-in Variable} pi\n\ +The ratio of the circumference of a circle to its diameter.\n\ +Internally, @code{pi} is computed as @samp{4.0 * atan (1.0)}.\n\ +@end defvr"); DEFCONST (realmax, DBL_MAX, - "realmax (): return largest representable floating point number"); + "-*- texinfo -*-\n\ +@defvr {Built-in Variable} realmax\n\ +The largest floating point number that is representable. The actual\n\ +value is system-dependent. On machines that support 64 bit IEEE\n\ +floating point arithmetic, @code{realmax} is approximately\n\ +@ifinfo\n\ + 1.7977e+308\n\ +@end ifinfo\n\ +@iftex\n\ +@tex\n\ + $1.7977\\times10^{308}$.\n\ +@end tex\n\ +@end iftex\n\ +@end defvr"); DEFCONST (realmin, DBL_MIN, - "realmin (): return smallest representable floating point number"); + "-*- texinfo -*-\n\ +@defvr {Built-in Variable} realmin\n\ +The smallest floating point number that is representable. The actual\n\ +value is system-dependent. On machines that support 64 bit IEEE\n\ +floating point arithmetic, @code{realmin} is approximately\n\ +@ifinfo\n\ + 2.2251e-308\n\ +@end ifinfo\n\ +@iftex\n\ +@tex\n\ + $2.2251\\times10^{-308}$.\n\ +@end tex\n\ +@end iftex\n\ +@end defvr"); DEFVAR (treat_neg_dim_as_zero, 0.0, treat_neg_dim_as_zero, "convert negative dimensions to zero");