Mercurial > hg > octave-nkf
diff scripts/linear-algebra/expm.m @ 8517:81d6ab3ac93c
Allow documentation tobe built for other formats than tex and info
author | sh@sh-laptop |
---|---|
date | Wed, 14 Jan 2009 20:44:25 -0500 |
parents | bc982528de11 |
children | e07e93c04080 |
line wrap: on
line diff
--- a/scripts/linear-algebra/expm.m +++ b/scripts/linear-algebra/expm.m @@ -27,13 +27,13 @@ ## $$ ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## ## @example ## expm(a) = I + a + a^2/2! + a^3/3! + ... ## @end example ## -## @end ifinfo +## @end ifnottex ## The Taylor series is @emph{not} the way to compute the matrix ## exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to ## Compute the Exponential of a Matrix}, SIAM Review, 1978. This routine @@ -43,9 +43,9 @@ ## Pad\'e ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## Pade' -## @end ifinfo +## @end ifnottex ## approximation method with three step preconditioning (SIAM Journal on ## Numerical Analysis, 1977). Diagonal ## @iftex @@ -53,32 +53,32 @@ ## Pad\'e ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## Pade' -## @end ifinfo +## @end ifnottex ## approximations are rational polynomials of matrices ## @iftex ## @tex ## $D_q(a)^{-1}N_q(a)$ ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## ## @example ## -1 ## D (a) N (a) ## @end example ## -## @end ifinfo +## @end ifnottex ## whose Taylor series matches the first ## @iftex ## @tex ## $2 q + 1 $ ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## @code{2q+1} -## @end ifinfo +## @end ifnottex ## terms of the Taylor series above; direct evaluation of the Taylor series ## (with the same preconditioning steps) may be desirable in lieu of the ## @iftex @@ -86,18 +86,18 @@ ## Pad\'e ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## Pade' -## @end ifinfo +## @end ifnottex ## approximation when ## @iftex ## @tex ## $D_q(a)$ ## @end tex ## @end iftex -## @ifinfo +## @ifnottex ## @code{Dq(a)} -## @end ifinfo +## @end ifnottex ## is ill-conditioned. ## @end deftypefn