diff libcruft/lapack/slarfb.f @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/libcruft/lapack/slarfb.f
@@ -0,0 +1,587 @@
+      SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
+     $                   T, LDT, C, LDC, WORK, LDWORK )
+*
+*  -- LAPACK auxiliary routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      CHARACTER          DIRECT, SIDE, STOREV, TRANS
+      INTEGER            K, LDC, LDT, LDV, LDWORK, M, N
+*     ..
+*     .. Array Arguments ..
+      REAL               C( LDC, * ), T( LDT, * ), V( LDV, * ),
+     $                   WORK( LDWORK, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  SLARFB applies a real block reflector H or its transpose H' to a
+*  real m by n matrix C, from either the left or the right.
+*
+*  Arguments
+*  =========
+*
+*  SIDE    (input) CHARACTER*1
+*          = 'L': apply H or H' from the Left
+*          = 'R': apply H or H' from the Right
+*
+*  TRANS   (input) CHARACTER*1
+*          = 'N': apply H (No transpose)
+*          = 'T': apply H' (Transpose)
+*
+*  DIRECT  (input) CHARACTER*1
+*          Indicates how H is formed from a product of elementary
+*          reflectors
+*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
+*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*
+*  STOREV  (input) CHARACTER*1
+*          Indicates how the vectors which define the elementary
+*          reflectors are stored:
+*          = 'C': Columnwise
+*          = 'R': Rowwise
+*
+*  M       (input) INTEGER
+*          The number of rows of the matrix C.
+*
+*  N       (input) INTEGER
+*          The number of columns of the matrix C.
+*
+*  K       (input) INTEGER
+*          The order of the matrix T (= the number of elementary
+*          reflectors whose product defines the block reflector).
+*
+*  V       (input) REAL array, dimension
+*                                (LDV,K) if STOREV = 'C'
+*                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
+*                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
+*          The matrix V. See further details.
+*
+*  LDV     (input) INTEGER
+*          The leading dimension of the array V.
+*          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
+*          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
+*          if STOREV = 'R', LDV >= K.
+*
+*  T       (input) REAL array, dimension (LDT,K)
+*          The triangular k by k matrix T in the representation of the
+*          block reflector.
+*
+*  LDT     (input) INTEGER
+*          The leading dimension of the array T. LDT >= K.
+*
+*  C       (input/output) REAL array, dimension (LDC,N)
+*          On entry, the m by n matrix C.
+*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
+*
+*  LDC     (input) INTEGER
+*          The leading dimension of the array C. LDA >= max(1,M).
+*
+*  WORK    (workspace) REAL array, dimension (LDWORK,K)
+*
+*  LDWORK  (input) INTEGER
+*          The leading dimension of the array WORK.
+*          If SIDE = 'L', LDWORK >= max(1,N);
+*          if SIDE = 'R', LDWORK >= max(1,M).
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      REAL               ONE
+      PARAMETER          ( ONE = 1.0E+0 )
+*     ..
+*     .. Local Scalars ..
+      CHARACTER          TRANST
+      INTEGER            I, J
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      EXTERNAL           LSAME
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           SCOPY, SGEMM, STRMM
+*     ..
+*     .. Executable Statements ..
+*
+*     Quick return if possible
+*
+      IF( M.LE.0 .OR. N.LE.0 )
+     $   RETURN
+*
+      IF( LSAME( TRANS, 'N' ) ) THEN
+         TRANST = 'T'
+      ELSE
+         TRANST = 'N'
+      END IF
+*
+      IF( LSAME( STOREV, 'C' ) ) THEN
+*
+         IF( LSAME( DIRECT, 'F' ) ) THEN
+*
+*           Let  V =  ( V1 )    (first K rows)
+*                     ( V2 )
+*           where  V1  is unit lower triangular.
+*
+            IF( LSAME( SIDE, 'L' ) ) THEN
+*
+*              Form  H * C  or  H' * C  where  C = ( C1 )
+*                                                  ( C2 )
+*
+*              W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)
+*
+*              W := C1'
+*
+               DO 10 J = 1, K
+                  CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+   10          CONTINUE
+*
+*              W := W * V1
+*
+               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
+     $                     K, ONE, V, LDV, WORK, LDWORK )
+               IF( M.GT.K ) THEN
+*
+*                 W := W + C2'*V2
+*
+                  CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
+     $                        ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
+     $                        ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T'  or  W * T
+*
+               CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - V * W'
+*
+               IF( M.GT.K ) THEN
+*
+*                 C2 := C2 - V2 * W'
+*
+                  CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
+     $                        -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
+     $                        C( K+1, 1 ), LDC )
+               END IF
+*
+*              W := W * V1'
+*
+               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
+     $                     ONE, V, LDV, WORK, LDWORK )
+*
+*              C1 := C1 - W'
+*
+               DO 30 J = 1, K
+                  DO 20 I = 1, N
+                     C( J, I ) = C( J, I ) - WORK( I, J )
+   20             CONTINUE
+   30          CONTINUE
+*
+            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
+*
+*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
+*
+*              W := C1
+*
+               DO 40 J = 1, K
+                  CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
+   40          CONTINUE
+*
+*              W := W * V1
+*
+               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
+     $                     K, ONE, V, LDV, WORK, LDWORK )
+               IF( N.GT.K ) THEN
+*
+*                 W := W + C2 * V2
+*
+                  CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
+     $                        ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
+     $                        ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T  or  W * T'
+*
+               CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - W * V'
+*
+               IF( N.GT.K ) THEN
+*
+*                 C2 := C2 - W * V2'
+*
+                  CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
+     $                        -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
+     $                        C( 1, K+1 ), LDC )
+               END IF
+*
+*              W := W * V1'
+*
+               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
+     $                     ONE, V, LDV, WORK, LDWORK )
+*
+*              C1 := C1 - W
+*
+               DO 60 J = 1, K
+                  DO 50 I = 1, M
+                     C( I, J ) = C( I, J ) - WORK( I, J )
+   50             CONTINUE
+   60          CONTINUE
+            END IF
+*
+         ELSE
+*
+*           Let  V =  ( V1 )
+*                     ( V2 )    (last K rows)
+*           where  V2  is unit upper triangular.
+*
+            IF( LSAME( SIDE, 'L' ) ) THEN
+*
+*              Form  H * C  or  H' * C  where  C = ( C1 )
+*                                                  ( C2 )
+*
+*              W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)
+*
+*              W := C2'
+*
+               DO 70 J = 1, K
+                  CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
+   70          CONTINUE
+*
+*              W := W * V2
+*
+               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
+     $                     K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
+               IF( M.GT.K ) THEN
+*
+*                 W := W + C1'*V1
+*
+                  CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
+     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T'  or  W * T
+*
+               CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - V * W'
+*
+               IF( M.GT.K ) THEN
+*
+*                 C1 := C1 - V1 * W'
+*
+                  CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
+     $                        -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
+               END IF
+*
+*              W := W * V2'
+*
+               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
+     $                     ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
+*
+*              C2 := C2 - W'
+*
+               DO 90 J = 1, K
+                  DO 80 I = 1, N
+                     C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
+   80             CONTINUE
+   90          CONTINUE
+*
+            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
+*
+*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
+*
+*              W := C2
+*
+               DO 100 J = 1, K
+                  CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
+  100          CONTINUE
+*
+*              W := W * V2
+*
+               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
+     $                     K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
+               IF( N.GT.K ) THEN
+*
+*                 W := W + C1 * V1
+*
+                  CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
+     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T  or  W * T'
+*
+               CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - W * V'
+*
+               IF( N.GT.K ) THEN
+*
+*                 C1 := C1 - W * V1'
+*
+                  CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
+     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
+               END IF
+*
+*              W := W * V2'
+*
+               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
+     $                     ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
+*
+*              C2 := C2 - W
+*
+               DO 120 J = 1, K
+                  DO 110 I = 1, M
+                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
+  110             CONTINUE
+  120          CONTINUE
+            END IF
+         END IF
+*
+      ELSE IF( LSAME( STOREV, 'R' ) ) THEN
+*
+         IF( LSAME( DIRECT, 'F' ) ) THEN
+*
+*           Let  V =  ( V1  V2 )    (V1: first K columns)
+*           where  V1  is unit upper triangular.
+*
+            IF( LSAME( SIDE, 'L' ) ) THEN
+*
+*              Form  H * C  or  H' * C  where  C = ( C1 )
+*                                                  ( C2 )
+*
+*              W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)
+*
+*              W := C1'
+*
+               DO 130 J = 1, K
+                  CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+  130          CONTINUE
+*
+*              W := W * V1'
+*
+               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
+     $                     ONE, V, LDV, WORK, LDWORK )
+               IF( M.GT.K ) THEN
+*
+*                 W := W + C2'*V2'
+*
+                  CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
+     $                        C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
+     $                        WORK, LDWORK )
+               END IF
+*
+*              W := W * T'  or  W * T
+*
+               CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - V' * W'
+*
+               IF( M.GT.K ) THEN
+*
+*                 C2 := C2 - V2' * W'
+*
+                  CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
+     $                        V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
+     $                        C( K+1, 1 ), LDC )
+               END IF
+*
+*              W := W * V1
+*
+               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
+     $                     K, ONE, V, LDV, WORK, LDWORK )
+*
+*              C1 := C1 - W'
+*
+               DO 150 J = 1, K
+                  DO 140 I = 1, N
+                     C( J, I ) = C( J, I ) - WORK( I, J )
+  140             CONTINUE
+  150          CONTINUE
+*
+            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
+*
+*              W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)
+*
+*              W := C1
+*
+               DO 160 J = 1, K
+                  CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
+  160          CONTINUE
+*
+*              W := W * V1'
+*
+               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
+     $                     ONE, V, LDV, WORK, LDWORK )
+               IF( N.GT.K ) THEN
+*
+*                 W := W + C2 * V2'
+*
+                  CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
+     $                        ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
+     $                        ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T  or  W * T'
+*
+               CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - W * V
+*
+               IF( N.GT.K ) THEN
+*
+*                 C2 := C2 - W * V2
+*
+                  CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
+     $                        -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
+     $                        C( 1, K+1 ), LDC )
+               END IF
+*
+*              W := W * V1
+*
+               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
+     $                     K, ONE, V, LDV, WORK, LDWORK )
+*
+*              C1 := C1 - W
+*
+               DO 180 J = 1, K
+                  DO 170 I = 1, M
+                     C( I, J ) = C( I, J ) - WORK( I, J )
+  170             CONTINUE
+  180          CONTINUE
+*
+            END IF
+*
+         ELSE
+*
+*           Let  V =  ( V1  V2 )    (V2: last K columns)
+*           where  V2  is unit lower triangular.
+*
+            IF( LSAME( SIDE, 'L' ) ) THEN
+*
+*              Form  H * C  or  H' * C  where  C = ( C1 )
+*                                                  ( C2 )
+*
+*              W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)
+*
+*              W := C2'
+*
+               DO 190 J = 1, K
+                  CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
+  190          CONTINUE
+*
+*              W := W * V2'
+*
+               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
+     $                     ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
+               IF( M.GT.K ) THEN
+*
+*                 W := W + C1'*V1'
+*
+                  CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
+     $                        C, LDC, V, LDV, ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T'  or  W * T
+*
+               CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - V' * W'
+*
+               IF( M.GT.K ) THEN
+*
+*                 C1 := C1 - V1' * W'
+*
+                  CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
+     $                        V, LDV, WORK, LDWORK, ONE, C, LDC )
+               END IF
+*
+*              W := W * V2
+*
+               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
+     $                     K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
+*
+*              C2 := C2 - W'
+*
+               DO 210 J = 1, K
+                  DO 200 I = 1, N
+                     C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
+  200             CONTINUE
+  210          CONTINUE
+*
+            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
+*
+*              W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)
+*
+*              W := C2
+*
+               DO 220 J = 1, K
+                  CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
+  220          CONTINUE
+*
+*              W := W * V2'
+*
+               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
+     $                     ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
+               IF( N.GT.K ) THEN
+*
+*                 W := W + C1 * V1'
+*
+                  CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
+     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
+               END IF
+*
+*              W := W * T  or  W * T'
+*
+               CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
+     $                     ONE, T, LDT, WORK, LDWORK )
+*
+*              C := C - W * V
+*
+               IF( N.GT.K ) THEN
+*
+*                 C1 := C1 - W * V1
+*
+                  CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
+     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
+               END IF
+*
+*              W := W * V2
+*
+               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
+     $                     K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
+*
+*              C1 := C1 - W
+*
+               DO 240 J = 1, K
+                  DO 230 I = 1, M
+                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
+  230             CONTINUE
+  240          CONTINUE
+*
+            END IF
+*
+         END IF
+      END IF
+*
+      RETURN
+*
+*     End of SLARFB
+*
+      END