diff liboctave/fCMatrix.cc @ 7789:82be108cc558

First attempt at single precision tyeps * * * corrections to qrupdate single precision routines * * * prefer demotion to single over promotion to double * * * Add single precision support to log2 function * * * Trivial PROJECT file update * * * Cache optimized hermitian/transpose methods * * * Add tests for tranpose/hermitian and ChangeLog entry for new transpose code
author David Bateman <dbateman@free.fr>
date Sun, 27 Apr 2008 22:34:17 +0200
parents
children f42c6f8d6d8e
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/liboctave/fCMatrix.cc
@@ -0,0 +1,4071 @@
+// Matrix manipulations.
+/*
+
+Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
+              2003, 2004, 2005, 2006, 2007 John W. Eaton
+
+This file is part of Octave.
+
+Octave is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+Octave is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with Octave; see the file COPYING.  If not, see
+<http://www.gnu.org/licenses/>.
+
+*/
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include <cfloat>
+
+#include <iostream>
+#include <vector>
+
+// FIXME
+#ifdef HAVE_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#include "Array-util.h"
+#include "fCMatrix.h"
+#include "fCmplxDET.h"
+#include "fCmplxSCHUR.h"
+#include "fCmplxSVD.h"
+#include "fCmplxCHOL.h"
+#include "f77-fcn.h"
+#include "functor.h"
+#include "lo-error.h"
+#include "lo-ieee.h"
+#include "lo-mappers.h"
+#include "lo-utils.h"
+#include "mx-base.h"
+#include "mx-fcm-fdm.h"
+#include "mx-fdm-fcm.h"
+#include "mx-fcm-fs.h"
+#include "mx-inlines.cc"
+#include "oct-cmplx.h"
+
+#if defined (HAVE_FFTW3)
+#include "oct-fftw.h"
+#endif
+
+// Fortran functions we call.
+
+extern "C"
+{
+  F77_RET_T
+  F77_FUNC (xilaenv, XILAENV) (const octave_idx_type&, F77_CONST_CHAR_ARG_DECL,
+			       F77_CONST_CHAR_ARG_DECL,
+			       const octave_idx_type&, const octave_idx_type&,
+			       const octave_idx_type&, const octave_idx_type&,
+			       octave_idx_type&
+			       F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cgebal, CGEBAL) (F77_CONST_CHAR_ARG_DECL,
+			     const octave_idx_type&, FloatComplex*, const octave_idx_type&, octave_idx_type&,
+			     octave_idx_type&, float*, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (sgebak, SGEBAK) (F77_CONST_CHAR_ARG_DECL,
+			     F77_CONST_CHAR_ARG_DECL,
+			     const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, float*,
+			     const octave_idx_type&, float*, const octave_idx_type&, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cgemm, CGEMM) (F77_CONST_CHAR_ARG_DECL,
+			   F77_CONST_CHAR_ARG_DECL,
+			   const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
+			   const FloatComplex&, const FloatComplex*, const octave_idx_type&,
+			   const FloatComplex*, const octave_idx_type&, const FloatComplex&,
+			   FloatComplex*, const octave_idx_type&
+			   F77_CHAR_ARG_LEN_DECL
+			   F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL,
+                           const octave_idx_type&, const octave_idx_type&, const FloatComplex&,
+                           const FloatComplex*, const octave_idx_type&, const FloatComplex*,
+                           const octave_idx_type&, const FloatComplex&, FloatComplex*, const octave_idx_type&
+                           F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (xcdotu, XCDOTU) (const octave_idx_type&, const FloatComplex*, const octave_idx_type&,
+			     const FloatComplex*, const octave_idx_type&, FloatComplex&);
+
+  F77_RET_T
+  F77_FUNC (cgetrf, CGETRF) (const octave_idx_type&, const octave_idx_type&, FloatComplex*, const octave_idx_type&,
+			     octave_idx_type*, octave_idx_type&);
+
+  F77_RET_T
+  F77_FUNC (cgetrs, CGETRS) (F77_CONST_CHAR_ARG_DECL,
+			     const octave_idx_type&, const octave_idx_type&, FloatComplex*, const octave_idx_type&,
+			     const octave_idx_type*, FloatComplex*, const octave_idx_type&, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cgetri, CGETRI) (const octave_idx_type&, FloatComplex*, const octave_idx_type&, const octave_idx_type*,
+			     FloatComplex*, const octave_idx_type&, octave_idx_type&);
+
+  F77_RET_T
+  F77_FUNC (cgecon, CGECON) (F77_CONST_CHAR_ARG_DECL,
+			     const octave_idx_type&, FloatComplex*, 
+			     const octave_idx_type&, const float&, float&, 
+			     FloatComplex*, float*, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cgelsy, CGELSY) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
+			     FloatComplex*, const octave_idx_type&, FloatComplex*,
+			     const octave_idx_type&, octave_idx_type*, float&, octave_idx_type&,
+			     FloatComplex*, const octave_idx_type&, float*, octave_idx_type&);
+
+  F77_RET_T
+  F77_FUNC (cgelsd, CGELSD) (const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
+			     FloatComplex*, const octave_idx_type&, FloatComplex*,
+			     const octave_idx_type&, float*, float&, octave_idx_type&,
+			     FloatComplex*, const octave_idx_type&, float*, 
+			     octave_idx_type*, octave_idx_type&);
+
+  F77_RET_T
+  F77_FUNC (cpotrf, CPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
+			     FloatComplex*, const octave_idx_type&, 
+			     octave_idx_type& F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cpocon, CPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
+			     FloatComplex*, const octave_idx_type&, const float&,
+			     float&, FloatComplex*, float*,
+			     octave_idx_type& F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cpotrs, CPOTRS) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
+			     const octave_idx_type&, const FloatComplex*, 
+			     const octave_idx_type&, FloatComplex*, 
+			     const octave_idx_type&, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (ctrtri, CTRTRI) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, 
+			     const octave_idx_type&, const FloatComplex*, 
+			     const octave_idx_type&, octave_idx_type& 
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (ctrcon, CTRCON) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, 
+			     F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
+			     const FloatComplex*, const octave_idx_type&, float&,
+			     FloatComplex*, float*, octave_idx_type& 
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (ctrtrs, CTRTRS) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, 
+			     F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, 
+			     const octave_idx_type&, const FloatComplex*, 
+			     const octave_idx_type&, FloatComplex*, 
+			     const octave_idx_type&, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (cffti, CFFTI) (const octave_idx_type&, FloatComplex*);
+
+  F77_RET_T
+  F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, FloatComplex*, FloatComplex*);
+
+  F77_RET_T
+  F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, FloatComplex*, FloatComplex*);
+
+  F77_RET_T
+  F77_FUNC (clartg, CLARTG) (const FloatComplex&, const FloatComplex&,
+			     float&, FloatComplex&, FloatComplex&);
+
+  F77_RET_T
+  F77_FUNC (ctrsyl, CTRSYL) (F77_CONST_CHAR_ARG_DECL,
+			     F77_CONST_CHAR_ARG_DECL,
+			     const octave_idx_type&, const octave_idx_type&, const octave_idx_type&,
+			     const FloatComplex*, const octave_idx_type&,
+			     const FloatComplex*, const octave_idx_type&,
+			     const FloatComplex*, const octave_idx_type&, float&, octave_idx_type&
+			     F77_CHAR_ARG_LEN_DECL
+			     F77_CHAR_ARG_LEN_DECL);
+
+  F77_RET_T
+  F77_FUNC (xclange, XCLANGE) (F77_CONST_CHAR_ARG_DECL,
+			       const octave_idx_type&, const octave_idx_type&, const FloatComplex*,
+			       const octave_idx_type&, float*, float&
+			       F77_CHAR_ARG_LEN_DECL);
+}
+
+static const FloatComplex FloatComplex_NaN_result (octave_Float_NaN, octave_Float_NaN);
+
+// FloatComplex Matrix class
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatMatrix& a)
+  : MArray2<FloatComplex> (a.rows (), a.cols ())
+{
+  for (octave_idx_type j = 0; j < cols (); j++)
+    for (octave_idx_type i = 0; i < rows (); i++)
+      elem (i, j) = a.elem (i, j);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatRowVector& rv)
+  : MArray2<FloatComplex> (1, rv.length (), 0.0)
+{
+  for (octave_idx_type i = 0; i < rv.length (); i++)
+    elem (0, i) = rv.elem (i);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatColumnVector& cv)
+  : MArray2<FloatComplex> (cv.length (), 1, 0.0)
+{
+  for (octave_idx_type i = 0; i < cv.length (); i++)
+    elem (i, 0) = cv.elem (i);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatDiagMatrix& a)
+  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
+{
+  for (octave_idx_type i = 0; i < a.length (); i++)
+    elem (i, i) = a.elem (i, i);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatComplexRowVector& rv)
+  : MArray2<FloatComplex> (1, rv.length (), 0.0)
+{
+  for (octave_idx_type i = 0; i < rv.length (); i++)
+    elem (0, i) = rv.elem (i);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatComplexColumnVector& cv)
+  : MArray2<FloatComplex> (cv.length (), 1, 0.0)
+{
+  for (octave_idx_type i = 0; i < cv.length (); i++)
+    elem (i, 0) = cv.elem (i);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const FloatComplexDiagMatrix& a)
+  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
+{
+  for (octave_idx_type i = 0; i < a.length (); i++)
+    elem (i, i) = a.elem (i, i);
+}
+
+// FIXME -- could we use a templated mixed-type copy function
+// here?
+
+FloatComplexMatrix::FloatComplexMatrix (const boolMatrix& a)
+  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
+{
+  for (octave_idx_type i = 0; i < a.rows (); i++)
+    for (octave_idx_type j = 0; j < a.cols (); j++)
+      elem (i, j) = a.elem (i, j);
+}
+
+FloatComplexMatrix::FloatComplexMatrix (const charMatrix& a)
+  : MArray2<FloatComplex> (a.rows (), a.cols (), 0.0)
+{
+  for (octave_idx_type i = 0; i < a.rows (); i++)
+    for (octave_idx_type j = 0; j < a.cols (); j++)
+      elem (i, j) = a.elem (i, j);
+}
+
+bool
+FloatComplexMatrix::operator == (const FloatComplexMatrix& a) const
+{
+  if (rows () != a.rows () || cols () != a.cols ())
+    return false;
+
+  return mx_inline_equal (data (), a.data (), length ());
+}
+
+bool
+FloatComplexMatrix::operator != (const FloatComplexMatrix& a) const
+{
+  return !(*this == a);
+}
+
+bool
+FloatComplexMatrix::is_hermitian (void) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (is_square () && nr > 0)
+    {
+      for (octave_idx_type i = 0; i < nr; i++)
+	for (octave_idx_type j = i; j < nc; j++)
+	  if (elem (i, j) != conj (elem (j, i)))
+	    return false;
+
+      return true;
+    }
+
+  return false;
+}
+
+// destructive insert/delete/reorder operations
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatMatrix& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type a_nc = a.cols ();
+
+  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  if (a_nr >0 && a_nc > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type j = 0; j < a_nc; j++)
+	for (octave_idx_type i = 0; i < a_nr; i++)
+	  xelem (r+i, c+j) = a.elem (i, j);
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatRowVector& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_len = a.length ();
+
+  if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  if (a_len > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type i = 0; i < a_len; i++)
+	xelem (r, c+i) = a.elem (i);
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatColumnVector& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_len = a.length ();
+
+  if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  if (a_len > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type i = 0; i < a_len; i++)
+	xelem (r+i, c) = a.elem (i);
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatDiagMatrix& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type a_nc = a.cols ();
+
+  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1);
+
+  octave_idx_type a_len = a.length ();
+
+  if (a_len > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type i = 0; i < a_len; i++)
+	xelem (r+i, c+i) = a.elem (i, i);
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatComplexMatrix& a, octave_idx_type r, octave_idx_type c)
+{
+  Array2<FloatComplex>::insert (a, r, c);
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatComplexRowVector& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_len = a.length ();
+  if (r < 0 || r >= rows () || c < 0 || c + a_len > cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  for (octave_idx_type i = 0; i < a_len; i++)
+    elem (r, c+i) = a.elem (i);
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatComplexColumnVector& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_len = a.length ();
+
+  if (r < 0 || r + a_len > rows () || c < 0 || c >= cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  if (a_len > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type i = 0; i < a_len; i++)
+	xelem (r+i, c) = a.elem (i);
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::insert (const FloatComplexDiagMatrix& a, octave_idx_type r, octave_idx_type c)
+{
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type a_nc = a.cols ();
+
+  if (r < 0 || r + a_nr > rows () || c < 0 || c + a_nc > cols ())
+    {
+      (*current_liboctave_error_handler) ("range error for insert");
+      return *this;
+    }
+
+  fill (0.0, r, c, r + a_nr - 1, c + a_nc - 1);
+
+  octave_idx_type a_len = a.length ();
+
+  if (a_len > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type i = 0; i < a_len; i++)
+	xelem (r+i, c+i) = a.elem (i, i);
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::fill (float val)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type j = 0; j < nc; j++)
+	for (octave_idx_type i = 0; i < nr; i++)
+	  xelem (i, j) = val;
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::fill (const FloatComplex& val)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      make_unique ();
+
+      for (octave_idx_type j = 0; j < nc; j++)
+	for (octave_idx_type i = 0; i < nr; i++)
+	  xelem (i, j) = val;
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::fill (float val, octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
+      || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
+    {
+      (*current_liboctave_error_handler) ("range error for fill");
+      return *this;
+    }
+
+  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
+  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }
+
+  if (r2 >= r1 && c2 >= c1)
+    {
+      make_unique ();
+
+      for (octave_idx_type j = c1; j <= c2; j++)
+	for (octave_idx_type i = r1; i <= r2; i++)
+	  xelem (i, j) = val;
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::fill (const FloatComplex& val, octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
+      || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
+    {
+      (*current_liboctave_error_handler) ("range error for fill");
+      return *this;
+    }
+
+  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
+  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }
+
+  if (r2 >= r1 && c2 >=c1)
+    {
+      make_unique ();
+
+      for (octave_idx_type j = c1; j <= c2; j++)
+	for (octave_idx_type i = r1; i <= r2; i++)
+	  xelem (i, j) = val;
+    }
+
+  return *this;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != a.rows ())
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + a.cols ());
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatRowVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != 1)
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + a.length ());
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatColumnVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != a.length ())
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + 1);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatDiagMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != a.rows ())
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + a.cols ());
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatComplexMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != a.rows ())
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + a.cols ());
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatComplexRowVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != 1)
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + a.length ());
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatComplexColumnVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != a.length ())
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + 1);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::append (const FloatComplexDiagMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nr != a.rows ())
+    {
+      (*current_liboctave_error_handler) ("row dimension mismatch for append");
+      return *this;
+    }
+
+  octave_idx_type nc_insert = nc;
+  FloatComplexMatrix retval (nr, nc + a.cols ());
+  retval.insert (*this, 0, 0);
+  retval.insert (a, 0, nc_insert);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != a.cols ())
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + a.rows (), nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatRowVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != a.length ())
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + 1, nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatColumnVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != 1)
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + a.length (), nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatDiagMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != a.cols ())
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + a.rows (), nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatComplexMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != a.cols ())
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + a.rows (), nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatComplexRowVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != a.length ())
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + 1, nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatComplexColumnVector& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != 1)
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + a.length (), nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::stack (const FloatComplexDiagMatrix& a) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+  if (nc != a.cols ())
+    {
+      (*current_liboctave_error_handler)
+	("column dimension mismatch for stack");
+      return *this;
+    }
+
+  octave_idx_type nr_insert = nr;
+  FloatComplexMatrix retval (nr + a.rows (), nc);
+  retval.insert (*this, 0, 0);
+  retval.insert (a, nr_insert, 0);
+  return retval;
+}
+
+FloatComplexMatrix
+conj (const FloatComplexMatrix& a)
+{
+  octave_idx_type a_len = a.length ();
+  FloatComplexMatrix retval;
+  if (a_len > 0)
+    retval = FloatComplexMatrix (mx_inline_conj_dup (a.data (), a_len),
+			    a.rows (), a.cols ());
+  return retval;
+}
+
+// resize is the destructive equivalent for this one
+
+FloatComplexMatrix
+FloatComplexMatrix::extract (octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) const
+{
+  if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; }
+  if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; }
+
+  octave_idx_type new_r = r2 - r1 + 1;
+  octave_idx_type new_c = c2 - c1 + 1;
+
+  FloatComplexMatrix result (new_r, new_c);
+
+  for (octave_idx_type j = 0; j < new_c; j++)
+    for (octave_idx_type i = 0; i < new_r; i++)
+      result.xelem (i, j) = elem (r1+i, c1+j);
+
+  return result;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::extract_n (octave_idx_type r1, octave_idx_type c1, octave_idx_type nr, octave_idx_type nc) const
+{
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      result.xelem (i, j) = elem (r1+i, c1+j);
+
+  return result;
+}
+
+// extract row or column i.
+
+FloatComplexRowVector
+FloatComplexMatrix::row (octave_idx_type i) const
+{
+  octave_idx_type nc = cols ();
+  if (i < 0 || i >= rows ())
+    {
+      (*current_liboctave_error_handler) ("invalid row selection");
+      return FloatComplexRowVector ();
+    }
+
+  FloatComplexRowVector retval (nc);
+  for (octave_idx_type j = 0; j < cols (); j++)
+    retval.xelem (j) = elem (i, j);
+
+  return retval;
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::column (octave_idx_type i) const
+{
+  octave_idx_type nr = rows ();
+  if (i < 0 || i >= cols ())
+    {
+      (*current_liboctave_error_handler) ("invalid column selection");
+      return FloatComplexColumnVector ();
+    }
+
+  FloatComplexColumnVector retval (nr);
+  for (octave_idx_type j = 0; j < nr; j++)
+    retval.xelem (j) = elem (j, i);
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::inverse (void) const
+{
+  octave_idx_type info;
+  float rcond;
+  MatrixType mattype (*this);
+  return inverse (mattype, info, rcond, 0, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::inverse (octave_idx_type& info) const
+{
+  float rcond;
+  MatrixType mattype (*this);
+  return inverse (mattype, info, rcond, 0, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::inverse (octave_idx_type& info, float& rcond, int force,
+			int calc_cond) const
+{
+  MatrixType mattype (*this);
+  return inverse (mattype, info, rcond, force, calc_cond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::inverse (MatrixType &mattype) const
+{
+  octave_idx_type info;
+  float rcond;
+  return inverse (mattype, info, rcond, 0, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::inverse (MatrixType &mattype, octave_idx_type& info) const
+{
+  float rcond;
+  return inverse (mattype, info, rcond, 0, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::tinverse (MatrixType &mattype, octave_idx_type& info,
+			 float& rcond, int force, int calc_cond) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr != nc || nr == 0 || nc == 0)
+    (*current_liboctave_error_handler) ("inverse requires square matrix");
+  else
+    {
+      int typ = mattype.type ();
+      char uplo = (typ == MatrixType::Lower ? 'L' : 'U');
+      char udiag = 'N';
+      retval = *this;
+      FloatComplex *tmp_data = retval.fortran_vec ();
+
+      F77_XFCN (ctrtri, CTRTRI, (F77_CONST_CHAR_ARG2 (&uplo, 1),
+				 F77_CONST_CHAR_ARG2 (&udiag, 1),
+				 nr, tmp_data, nr, info 
+				 F77_CHAR_ARG_LEN (1)
+				 F77_CHAR_ARG_LEN (1)));
+
+      // Throw-away extra info LAPACK gives so as to not change output.
+      rcond = 0.0;
+      if (info != 0) 
+	info = -1;
+      else if (calc_cond) 
+	{
+	  octave_idx_type ztrcon_info = 0;
+	  char job = '1';
+
+	  OCTAVE_LOCAL_BUFFER (FloatComplex, cwork, 2*nr);
+	  OCTAVE_LOCAL_BUFFER (float, rwork, nr);
+
+	  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&job, 1),
+				     F77_CONST_CHAR_ARG2 (&uplo, 1),
+				     F77_CONST_CHAR_ARG2 (&udiag, 1),
+				     nr, tmp_data, nr, rcond, 
+				     cwork, rwork, ztrcon_info 
+				     F77_CHAR_ARG_LEN (1)
+				     F77_CHAR_ARG_LEN (1)
+				     F77_CHAR_ARG_LEN (1)));
+
+	  if (ztrcon_info != 0) 
+	    info = -1;
+	}
+
+      if (info == -1 && ! force)
+	retval = *this; // Restore matrix contents.
+    }
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::finverse (MatrixType &mattype, octave_idx_type& info,
+			 float& rcond, int force, int calc_cond) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr != nc)
+    (*current_liboctave_error_handler) ("inverse requires square matrix");
+  else
+    {
+      Array<octave_idx_type> ipvt (nr);
+      octave_idx_type *pipvt = ipvt.fortran_vec ();
+
+      retval = *this;
+      FloatComplex *tmp_data = retval.fortran_vec ();
+
+      Array<FloatComplex> z(1);
+      octave_idx_type lwork = -1;
+
+      // Query the optimum work array size.
+
+      F77_XFCN (cgetri, CGETRI, (nc, tmp_data, nr, pipvt, 
+				 z.fortran_vec (), lwork, info));
+
+      lwork = static_cast<octave_idx_type> (std::real(z(0)));
+      lwork = (lwork <  2 *nc ? 2*nc : lwork);
+      z.resize (lwork);
+      FloatComplex *pz = z.fortran_vec ();
+
+      info = 0;
+
+      // Calculate the norm of the matrix, for later use.
+      float anorm;
+      if (calc_cond)
+	anorm  = retval.abs().sum().row(static_cast<octave_idx_type>(0)).max();
+
+      F77_XFCN (cgetrf, CGETRF, (nc, nc, tmp_data, nr, pipvt, info));
+
+      // Throw-away extra info LAPACK gives so as to not change output.
+      rcond = 0.0;
+      if (info != 0) 
+	info = -1;
+      else if (calc_cond) 
+	{
+	  // Now calculate the condition number for non-singular matrix.
+	  octave_idx_type zgecon_info = 0;
+	  char job = '1';
+	  Array<float> rz (2 * nc);
+	  float *prz = rz.fortran_vec ();
+	  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
+				     nc, tmp_data, nr, anorm, 
+				     rcond, pz, prz, zgecon_info
+				     F77_CHAR_ARG_LEN (1)));
+
+	  if (zgecon_info != 0) 
+	    info = -1;
+	}
+
+      if (info == -1 && ! force)
+	retval = *this;  // Restore contents.
+      else
+	{
+	  octave_idx_type zgetri_info = 0;
+
+	  F77_XFCN (cgetri, CGETRI, (nc, tmp_data, nr, pipvt,
+				     pz, lwork, zgetri_info));
+
+	  if (zgetri_info != 0) 
+	    info = -1;
+	}
+
+      if (info != 0)
+	mattype.mark_as_rectangular();
+    }
+  
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::inverse (MatrixType &mattype, octave_idx_type& info,
+			float& rcond, int force, int calc_cond) const
+{
+  int typ = mattype.type (false);
+  FloatComplexMatrix ret;
+
+  if (typ == MatrixType::Unknown)
+    typ = mattype.type (*this);
+
+  if (typ == MatrixType::Upper || typ == MatrixType::Lower)
+    ret = tinverse (mattype, info, rcond, force, calc_cond);
+  else
+    {
+      if (mattype.is_hermitian ())
+	{
+	  FloatComplexCHOL chol (*this, info, calc_cond);
+	  if (info == 0)
+	    {
+	      if (calc_cond)
+		rcond = chol.rcond();
+	      else
+		rcond = 1.0;
+	      ret = chol.inverse ();
+	    }
+	  else
+	    mattype.mark_as_unsymmetric ();
+	}
+
+      if (!mattype.is_hermitian ())
+	ret = finverse(mattype, info, rcond, force, calc_cond);
+
+      if ((mattype.is_hermitian () || calc_cond) && rcond == 0.)
+	ret = FloatComplexMatrix (rows (), columns (), FloatComplex (octave_Float_Inf, 0.));
+    }
+
+  return ret;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::pseudo_inverse (float tol) const
+{
+  FloatComplexMatrix retval;
+
+  FloatComplexSVD result (*this, SVD::economy);
+
+  FloatDiagMatrix S = result.singular_values ();
+  FloatComplexMatrix U = result.left_singular_matrix ();
+  FloatComplexMatrix V = result.right_singular_matrix ();
+
+  FloatColumnVector sigma = S.diag ();
+
+  octave_idx_type r = sigma.length () - 1;
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (tol <= 0.0)
+    {
+      if (nr > nc)
+	tol = nr * sigma.elem (0) * DBL_EPSILON;
+      else
+	tol = nc * sigma.elem (0) * DBL_EPSILON;
+    }
+
+  while (r >= 0 && sigma.elem (r) < tol)
+    r--;
+
+  if (r < 0)
+    retval = FloatComplexMatrix (nc, nr, 0.0);
+  else
+    {
+      FloatComplexMatrix Ur = U.extract (0, 0, nr-1, r);
+      FloatDiagMatrix D = FloatDiagMatrix (sigma.extract (0, r)) . inverse ();
+      FloatComplexMatrix Vr = V.extract (0, 0, nc-1, r);
+      retval = Vr * D * Ur.hermitian ();
+    }
+
+  return retval;
+}
+
+#if defined (HAVE_FFTW3)
+
+FloatComplexMatrix
+FloatComplexMatrix::fourier (void) const
+{
+  size_t nr = rows ();
+  size_t nc = cols ();
+
+  FloatComplexMatrix retval (nr, nc);
+
+  size_t npts, nsamples;
+
+  if (nr == 1 || nc == 1)
+    {
+      npts = nr > nc ? nr : nc;
+      nsamples = 1;
+    }
+  else
+    {
+      npts = nr;
+      nsamples = nc;
+    }
+
+  const FloatComplex *in (data ());
+  FloatComplex *out (retval.fortran_vec ());
+
+  octave_fftw::fft (in, out, npts, nsamples); 
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::ifourier (void) const
+{
+  size_t nr = rows ();
+  size_t nc = cols ();
+
+  FloatComplexMatrix retval (nr, nc);
+
+  size_t npts, nsamples;
+
+  if (nr == 1 || nc == 1)
+    {
+      npts = nr > nc ? nr : nc;
+      nsamples = 1;
+    }
+  else
+    {
+      npts = nr;
+      nsamples = nc;
+    }
+
+  const FloatComplex *in (data ());
+  FloatComplex *out (retval.fortran_vec ());
+
+  octave_fftw::ifft (in, out, npts, nsamples); 
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::fourier2d (void) const
+{
+  dim_vector dv(rows (), cols ());
+
+  FloatComplexMatrix retval (rows (), cols ());
+  const FloatComplex *in (data ());
+  FloatComplex *out (retval.fortran_vec ());
+
+  octave_fftw::fftNd (in, out, 2, dv);
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::ifourier2d (void) const
+{
+  dim_vector dv(rows (), cols ());
+
+  FloatComplexMatrix retval (rows (), cols ());
+  const FloatComplex *in (data ());
+  FloatComplex *out (retval.fortran_vec ());
+
+  octave_fftw::ifftNd (in, out, 2, dv);
+
+  return retval;
+}
+
+#else
+
+FloatComplexMatrix
+FloatComplexMatrix::fourier (void) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type npts, nsamples;
+
+  if (nr == 1 || nc == 1)
+    {
+      npts = nr > nc ? nr : nc;
+      nsamples = 1;
+    }
+  else
+    {
+      npts = nr;
+      nsamples = nc;
+    }
+
+  octave_idx_type nn = 4*npts+15;
+
+  Array<FloatComplex> wsave (nn);
+  FloatComplex *pwsave = wsave.fortran_vec ();
+
+  retval = *this;
+  FloatComplex *tmp_data = retval.fortran_vec ();
+
+  F77_FUNC (cffti, CFFTI) (npts, pwsave);
+
+  for (octave_idx_type j = 0; j < nsamples; j++)
+    {
+      OCTAVE_QUIT;
+
+      F77_FUNC (cfftf, CFFTF) (npts, &tmp_data[npts*j], pwsave);
+    }
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::ifourier (void) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type npts, nsamples;
+
+  if (nr == 1 || nc == 1)
+    {
+      npts = nr > nc ? nr : nc;
+      nsamples = 1;
+    }
+  else
+    {
+      npts = nr;
+      nsamples = nc;
+    }
+
+  octave_idx_type nn = 4*npts+15;
+
+  Array<FloatComplex> wsave (nn);
+  FloatComplex *pwsave = wsave.fortran_vec ();
+
+  retval = *this;
+  FloatComplex *tmp_data = retval.fortran_vec ();
+
+  F77_FUNC (cffti, CFFTI) (npts, pwsave);
+
+  for (octave_idx_type j = 0; j < nsamples; j++)
+    {
+      OCTAVE_QUIT;
+
+      F77_FUNC (cfftb, CFFTB) (npts, &tmp_data[npts*j], pwsave);
+    }
+
+  for (octave_idx_type j = 0; j < npts*nsamples; j++)
+    tmp_data[j] = tmp_data[j] / static_cast<float> (npts);
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::fourier2d (void) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type npts, nsamples;
+
+  if (nr == 1 || nc == 1)
+    {
+      npts = nr > nc ? nr : nc;
+      nsamples = 1;
+    }
+  else
+    {
+      npts = nr;
+      nsamples = nc;
+    }
+
+  octave_idx_type nn = 4*npts+15;
+
+  Array<FloatComplex> wsave (nn);
+  FloatComplex *pwsave = wsave.fortran_vec ();
+
+  retval = *this;
+  FloatComplex *tmp_data = retval.fortran_vec ();
+
+  F77_FUNC (cffti, CFFTI) (npts, pwsave);
+
+  for (octave_idx_type j = 0; j < nsamples; j++)
+    {
+      OCTAVE_QUIT;
+
+      F77_FUNC (cfftf, CFFTF) (npts, &tmp_data[npts*j], pwsave);
+    }
+
+  npts = nc;
+  nsamples = nr;
+  nn = 4*npts+15;
+
+  wsave.resize (nn);
+  pwsave = wsave.fortran_vec ();
+
+  Array<FloatComplex> tmp (npts);
+  FloatComplex *prow = tmp.fortran_vec ();
+
+  F77_FUNC (cffti, CFFTI) (npts, pwsave);
+
+  for (octave_idx_type j = 0; j < nsamples; j++)
+    {
+      OCTAVE_QUIT;
+
+      for (octave_idx_type i = 0; i < npts; i++)
+	prow[i] = tmp_data[i*nr + j];
+
+      F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave);
+
+      for (octave_idx_type i = 0; i < npts; i++)
+	tmp_data[i*nr + j] = prow[i];
+    }
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::ifourier2d (void) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type npts, nsamples;
+
+  if (nr == 1 || nc == 1)
+    {
+      npts = nr > nc ? nr : nc;
+      nsamples = 1;
+    }
+  else
+    {
+      npts = nr;
+      nsamples = nc;
+    }
+
+  octave_idx_type nn = 4*npts+15;
+
+  Array<FloatComplex> wsave (nn);
+  FloatComplex *pwsave = wsave.fortran_vec ();
+
+  retval = *this;
+  FloatComplex *tmp_data = retval.fortran_vec ();
+
+  F77_FUNC (cffti, CFFTI) (npts, pwsave);
+
+  for (octave_idx_type j = 0; j < nsamples; j++)
+    {
+      OCTAVE_QUIT;
+
+      F77_FUNC (cfftb, CFFTB) (npts, &tmp_data[npts*j], pwsave);
+    }
+
+  for (octave_idx_type j = 0; j < npts*nsamples; j++)
+    tmp_data[j] = tmp_data[j] / static_cast<float> (npts);
+
+  npts = nc;
+  nsamples = nr;
+  nn = 4*npts+15;
+
+  wsave.resize (nn);
+  pwsave = wsave.fortran_vec ();
+
+  Array<FloatComplex> tmp (npts);
+  FloatComplex *prow = tmp.fortran_vec ();
+
+  F77_FUNC (cffti, CFFTI) (npts, pwsave);
+
+  for (octave_idx_type j = 0; j < nsamples; j++)
+    {
+      OCTAVE_QUIT;
+
+      for (octave_idx_type i = 0; i < npts; i++)
+	prow[i] = tmp_data[i*nr + j];
+
+      F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave);
+
+      for (octave_idx_type i = 0; i < npts; i++)
+	tmp_data[i*nr + j] = prow[i] / static_cast<float> (npts);
+    }
+
+  return retval;
+}
+
+#endif
+
+FloatComplexDET
+FloatComplexMatrix::determinant (void) const
+{
+  octave_idx_type info;
+  float rcond;
+  return determinant (info, rcond, 0);
+}
+
+FloatComplexDET
+FloatComplexMatrix::determinant (octave_idx_type& info) const
+{
+  float rcond;
+  return determinant (info, rcond, 0);
+}
+
+FloatComplexDET
+FloatComplexMatrix::determinant (octave_idx_type& info, float& rcond, int calc_cond) const
+{
+  FloatComplexDET retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr == 0 || nc == 0)
+    {
+      retval = FloatComplexDET (1.0, 0);
+    }
+  else
+    {
+      Array<octave_idx_type> ipvt (nr);
+      octave_idx_type *pipvt = ipvt.fortran_vec ();
+
+      FloatComplexMatrix atmp = *this;
+      FloatComplex *tmp_data = atmp.fortran_vec ();
+
+      info = 0;
+
+      // Calculate the norm of the matrix, for later use.
+      float anorm = 0;
+      if (calc_cond) 
+	anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();
+
+      F77_XFCN (cgetrf, CGETRF, (nr, nc, tmp_data, nr, pipvt, info));
+
+      // Throw-away extra info LAPACK gives so as to not change output.
+      rcond = 0.0;
+      if (info != 0) 
+	{
+	  info = -1;
+	  retval = FloatComplexDET ();
+	} 
+      else 
+	{
+	  if (calc_cond) 
+	    {
+	      // Now calc the condition number for non-singular matrix.
+	      char job = '1';
+	      Array<FloatComplex> z (2*nr);
+	      FloatComplex *pz = z.fortran_vec ();
+	      Array<float> rz (2*nr);
+	      float *prz = rz.fortran_vec ();
+
+	      F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
+					 nc, tmp_data, nr, anorm, 
+					 rcond, pz, prz, info
+					 F77_CHAR_ARG_LEN (1)));
+	    }
+
+	  if (info != 0) 
+	    {
+	      info = -1;
+	      retval = FloatComplexDET ();
+	    } 
+	  else 
+	    {
+	      FloatComplex c = 1.0;
+	      int e = 0;
+
+	      for (octave_idx_type i = 0; i < nc; i++) 
+		{
+		  if (ipvt(i) != (i+1))
+		    c = -c;
+
+		  c *= atmp(i,i);
+
+		  if (c == static_cast<float> (0.0))
+		    break;
+
+		  while (std::abs(c) < 0.5)
+		    {
+		      c *= 2.0;
+		      e--;
+		    }
+
+		  while (std::abs(c) >= 2.0)
+		    {
+		      c /= 2.0;
+		      e++;
+		    }
+		}
+
+	      retval = FloatComplexDET (c, e);
+	    }
+	}
+    }
+  
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::utsolve (MatrixType &mattype, const FloatComplexMatrix& b, 
+			octave_idx_type& info, float& rcond, 
+			solve_singularity_handler sing_handler,
+			bool calc_cond) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr != b.rows ())
+    (*current_liboctave_error_handler)
+      ("matrix dimension mismatch solution of linear equations");
+  else if (nr == 0 || nc == 0 || b.cols () == 0)
+    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
+  else
+    {
+      volatile int typ = mattype.type ();
+
+      if (typ == MatrixType::Permuted_Upper ||
+	  typ == MatrixType::Upper)
+	{
+	  octave_idx_type b_nc = b.cols ();
+	  rcond = 1.;
+	  info = 0;
+
+	  if (typ == MatrixType::Permuted_Upper)
+	    {
+	      (*current_liboctave_error_handler)
+		("permuted triangular matrix not implemented");
+	    }
+	  else
+	    {
+	      const FloatComplex *tmp_data = fortran_vec ();
+
+	      if (calc_cond)
+		{
+		  char norm = '1';
+		  char uplo = 'U';
+		  char dia = 'N';
+
+		  Array<FloatComplex> z (2 * nc);
+		  FloatComplex *pz = z.fortran_vec ();
+		  Array<float> rz (nc);
+		  float *prz = rz.fortran_vec ();
+
+		  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), 
+					     F77_CONST_CHAR_ARG2 (&uplo, 1), 
+					     F77_CONST_CHAR_ARG2 (&dia, 1), 
+					     nr, tmp_data, nr, rcond,
+					     pz, prz, info
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)));
+
+		  if (info != 0) 
+		    info = -2;
+
+		  volatile float rcond_plus_one = rcond + 1.0;
+
+		  if (rcond_plus_one == 1.0 || xisnan (rcond))
+		    {
+		      info = -2;
+
+		      if (sing_handler)
+			sing_handler (rcond);
+		      else
+			(*current_liboctave_error_handler)
+			  ("matrix singular to machine precision, rcond = %g",
+			   rcond);
+		    }
+		}
+
+	      if (info == 0)
+		{
+		  retval = b;
+		  FloatComplex *result = retval.fortran_vec ();
+
+		  char uplo = 'U';
+		  char trans = 'N';
+		  char dia = 'N';
+
+		  F77_XFCN (ctrtrs, CTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1), 
+					     F77_CONST_CHAR_ARG2 (&trans, 1), 
+					     F77_CONST_CHAR_ARG2 (&dia, 1), 
+					     nr, b_nc, tmp_data, nr,
+					     result, nr, info
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)));
+		}
+	    }
+	}
+      else
+	(*current_liboctave_error_handler) ("incorrect matrix type");
+    }
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::ltsolve (MatrixType &mattype, const FloatComplexMatrix& b, 
+			octave_idx_type& info, float& rcond, 
+			solve_singularity_handler sing_handler,
+			bool calc_cond) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr != b.rows ())
+    (*current_liboctave_error_handler)
+      ("matrix dimension mismatch solution of linear equations");
+  else if (nr == 0 || nc == 0 || b.cols () == 0)
+    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
+  else
+    {
+      volatile int typ = mattype.type ();
+
+      if (typ == MatrixType::Permuted_Lower ||
+	  typ == MatrixType::Lower)
+	{
+	  octave_idx_type b_nc = b.cols ();
+	  rcond = 1.;
+	  info = 0;
+
+	  if (typ == MatrixType::Permuted_Lower)
+	    {
+	      (*current_liboctave_error_handler)
+		("permuted triangular matrix not implemented");
+	    }
+	  else
+	    {
+	      const FloatComplex *tmp_data = fortran_vec ();
+
+	      if (calc_cond)
+		{
+		  char norm = '1';
+		  char uplo = 'L';
+		  char dia = 'N';
+
+		  Array<FloatComplex> z (2 * nc);
+		  FloatComplex *pz = z.fortran_vec ();
+		  Array<float> rz (nc);
+		  float *prz = rz.fortran_vec ();
+
+		  F77_XFCN (ctrcon, CTRCON, (F77_CONST_CHAR_ARG2 (&norm, 1), 
+					     F77_CONST_CHAR_ARG2 (&uplo, 1), 
+					     F77_CONST_CHAR_ARG2 (&dia, 1), 
+					     nr, tmp_data, nr, rcond,
+					     pz, prz, info
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)));
+
+		  if (info != 0) 
+		    info = -2;
+
+		  volatile float rcond_plus_one = rcond + 1.0;
+
+		  if (rcond_plus_one == 1.0 || xisnan (rcond))
+		    {
+		      info = -2;
+
+		      if (sing_handler)
+			sing_handler (rcond);
+		      else
+			(*current_liboctave_error_handler)
+			  ("matrix singular to machine precision, rcond = %g",
+			   rcond);
+		    }
+		}
+
+	      if (info == 0)
+		{
+		  retval = b;
+		  FloatComplex *result = retval.fortran_vec ();
+
+		  char uplo = 'L';
+		  char trans = 'N';
+		  char dia = 'N';
+
+		  F77_XFCN (ctrtrs, CTRTRS, (F77_CONST_CHAR_ARG2 (&uplo, 1), 
+					     F77_CONST_CHAR_ARG2 (&trans, 1), 
+					     F77_CONST_CHAR_ARG2 (&dia, 1), 
+					     nr, b_nc, tmp_data, nr,
+					     result, nr, info
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)
+					     F77_CHAR_ARG_LEN (1)));
+		}
+	    }
+	}
+      else
+	(*current_liboctave_error_handler) ("incorrect matrix type");
+    }
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::fsolve (MatrixType &mattype, const FloatComplexMatrix& b, 
+		       octave_idx_type& info, float& rcond,
+		       solve_singularity_handler sing_handler,
+		       bool calc_cond) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+
+  if (nr != nc || nr != b.rows ())
+    (*current_liboctave_error_handler)
+      ("matrix dimension mismatch solution of linear equations");
+  else if (nr == 0 || b.cols () == 0)
+    retval = FloatComplexMatrix (nc, b.cols (), FloatComplex (0.0, 0.0));
+  else
+    {
+      volatile int typ = mattype.type ();
+ 
+     // Calculate the norm of the matrix, for later use.
+      float anorm = -1.;
+
+      if (typ == MatrixType::Hermitian)
+	{
+	  info = 0;
+	  char job = 'L';
+	  FloatComplexMatrix atmp = *this;
+	  FloatComplex *tmp_data = atmp.fortran_vec ();
+	  anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();
+
+	  F77_XFCN (cpotrf, CPOTRF, (F77_CONST_CHAR_ARG2 (&job, 1), nr, 
+				     tmp_data, nr, info
+				     F77_CHAR_ARG_LEN (1)));
+
+	  // Throw-away extra info LAPACK gives so as to not change output.
+	  rcond = 0.0;
+	  if (info != 0) 
+	    {
+	      info = -2;
+
+	      mattype.mark_as_unsymmetric ();
+	      typ = MatrixType::Full;
+	    }
+	  else 
+	    {
+	      if (calc_cond)
+		{
+		  Array<FloatComplex> z (2 * nc);
+		  FloatComplex *pz = z.fortran_vec ();
+		  Array<float> rz (nc);
+		  float *prz = rz.fortran_vec ();
+
+		  F77_XFCN (cpocon, CPOCON, (F77_CONST_CHAR_ARG2 (&job, 1),
+					     nr, tmp_data, nr, anorm,
+					     rcond, pz, prz, info
+					     F77_CHAR_ARG_LEN (1)));
+
+		  if (info != 0) 
+		    info = -2;
+
+		  volatile float rcond_plus_one = rcond + 1.0;
+
+		  if (rcond_plus_one == 1.0 || xisnan (rcond))
+		    {
+		      info = -2;
+
+		      if (sing_handler)
+			sing_handler (rcond);
+		      else
+			(*current_liboctave_error_handler)
+			  ("matrix singular to machine precision, rcond = %g",
+			   rcond);
+		    }
+		}
+
+	      if (info == 0)
+		{
+		  retval = b;
+		  FloatComplex *result = retval.fortran_vec ();
+
+		  octave_idx_type b_nc = b.cols ();
+
+		  F77_XFCN (cpotrs, CPOTRS, (F77_CONST_CHAR_ARG2 (&job, 1),
+					     nr, b_nc, tmp_data, nr,
+					     result, b.rows(), info
+					     F77_CHAR_ARG_LEN (1)));
+		}
+	      else
+		{
+		  mattype.mark_as_unsymmetric ();
+		  typ = MatrixType::Full;
+		}
+	    }
+	}
+
+      if (typ == MatrixType::Full)
+	{
+	  info = 0;
+
+	  Array<octave_idx_type> ipvt (nr);
+	  octave_idx_type *pipvt = ipvt.fortran_vec ();
+
+	  FloatComplexMatrix atmp = *this;
+	  FloatComplex *tmp_data = atmp.fortran_vec ();
+
+	  Array<FloatComplex> z (2 * nc);
+	  FloatComplex *pz = z.fortran_vec ();
+	  Array<float> rz (2 * nc);
+	  float *prz = rz.fortran_vec ();
+
+	  // Calculate the norm of the matrix, for later use.
+	  if (anorm < 0.)
+	    anorm = atmp.abs().sum().row(static_cast<octave_idx_type>(0)).max();
+
+	  F77_XFCN (cgetrf, CGETRF, (nr, nr, tmp_data, nr, pipvt, info));
+
+	  // Throw-away extra info LAPACK gives so as to not change output.
+	  rcond = 0.0;
+	  if (info != 0) 
+	    { 
+	      info = -2;
+
+	      if (sing_handler)
+		sing_handler (rcond);
+	      else
+		(*current_liboctave_error_handler)
+		  ("matrix singular to machine precision");
+
+	      mattype.mark_as_rectangular ();
+	    } 
+	  else 
+	    {
+	      if (calc_cond)
+		{
+		  // Now calculate the condition number for 
+		  // non-singular matrix.
+		  char job = '1';
+		  F77_XFCN (cgecon, CGECON, (F77_CONST_CHAR_ARG2 (&job, 1),
+					     nc, tmp_data, nr, anorm, 
+					     rcond, pz, prz, info
+					     F77_CHAR_ARG_LEN (1)));
+
+		  if (info != 0) 
+		    info = -2;
+
+		  volatile float rcond_plus_one = rcond + 1.0;
+
+		  if (rcond_plus_one == 1.0 || xisnan (rcond))
+		    {
+		      info = -2;
+
+		      if (sing_handler)
+			sing_handler (rcond);
+		      else
+			(*current_liboctave_error_handler)
+			  ("matrix singular to machine precision, rcond = %g",
+			   rcond);
+		    }
+		}
+
+	      if (info == 0)
+		{
+		  retval = b;
+		  FloatComplex *result = retval.fortran_vec ();
+
+		  octave_idx_type b_nc = b.cols ();
+
+		  char job = 'N';
+		  F77_XFCN (cgetrs, CGETRS, (F77_CONST_CHAR_ARG2 (&job, 1),
+					     nr, b_nc, tmp_data, nr,
+					     pipvt, result, b.rows(), info
+					     F77_CHAR_ARG_LEN (1))); 
+		}
+	      else
+		mattype.mark_as_rectangular ();		    
+	    }
+	}
+    }
+  
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b, 
+		      octave_idx_type& info) const
+{
+  float rcond;
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b, octave_idx_type& info,
+		      float& rcond) const
+{
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatMatrix& b, octave_idx_type& info, 
+		      float& rcond, solve_singularity_handler sing_handler,
+		      bool singular_fallback) const
+{
+  FloatComplexMatrix tmp (b);
+  return solve (typ, tmp, info, rcond, sing_handler, singular_fallback);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b, 
+		      octave_idx_type& info) const
+{
+  float rcond;
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexMatrix& b, 
+		      octave_idx_type& info, float& rcond) const
+{
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (MatrixType &mattype, const FloatComplexMatrix& b, 
+		      octave_idx_type& info, float& rcond,
+		      solve_singularity_handler sing_handler,
+		      bool singular_fallback) const
+{
+  FloatComplexMatrix retval;
+  int typ = mattype.type ();
+
+  if (typ == MatrixType::Unknown)
+    typ = mattype.type (*this);
+
+  // Only calculate the condition number for LU/Cholesky
+  if (typ == MatrixType::Upper || typ == MatrixType::Permuted_Upper)
+    retval = utsolve (mattype, b, info, rcond, sing_handler, false);
+  else if (typ == MatrixType::Lower || typ == MatrixType::Permuted_Lower)
+    retval = ltsolve (mattype, b, info, rcond, sing_handler, false);
+  else if (typ == MatrixType::Full || typ == MatrixType::Hermitian)
+    retval = fsolve (mattype, b, info, rcond, sing_handler, true);
+  else if (typ != MatrixType::Rectangular)
+    {
+      (*current_liboctave_error_handler) ("unknown matrix type");
+      return FloatComplexMatrix ();
+    }
+
+  // Rectangular or one of the above solvers flags a singular matrix
+  if (singular_fallback && mattype.type () == MatrixType::Rectangular)
+    {
+      octave_idx_type rank;
+      retval = lssolve (b, info, rank, rcond);
+    }
+
+  return retval;
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (typ, FloatComplexColumnVector (b), info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b, 
+		      octave_idx_type& info) const
+{
+  float rcond;
+  return solve (typ, FloatComplexColumnVector (b), info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b, 
+		      octave_idx_type& info, float& rcond) const
+{
+  return solve (typ, FloatComplexColumnVector (b), info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatColumnVector& b, 
+		      octave_idx_type& info, float& rcond,
+		      solve_singularity_handler sing_handler) const
+{
+  return solve (typ, FloatComplexColumnVector (b), info, rcond, sing_handler);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b, 
+		      octave_idx_type& info) const
+{
+  float rcond;
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
+		      octave_idx_type& info, float& rcond) const
+{
+  return solve (typ, b, info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (MatrixType &typ, const FloatComplexColumnVector& b,
+		      octave_idx_type& info, float& rcond,
+		      solve_singularity_handler sing_handler) const
+{
+
+  FloatComplexMatrix tmp (b);
+  return solve (typ, tmp, info, rcond, sing_handler).column(static_cast<octave_idx_type> (0));
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatMatrix& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info) const
+{
+  float rcond;
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info, float& rcond) const
+{
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatMatrix& b, octave_idx_type& info, float& rcond,
+		      solve_singularity_handler sing_handler) const
+{
+  FloatComplexMatrix tmp (b);
+  return solve (tmp, info, rcond, sing_handler);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatComplexMatrix& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info) const
+{
+  float rcond;
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info, float& rcond) const
+{
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::solve (const FloatComplexMatrix& b, octave_idx_type& info, float& rcond,
+		      solve_singularity_handler sing_handler) const
+{
+  MatrixType mattype (*this);
+  return solve (mattype, b, info, rcond, sing_handler);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatColumnVector& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (FloatComplexColumnVector (b), info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info) const
+{
+  float rcond;
+  return solve (FloatComplexColumnVector (b), info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info, 
+		      float& rcond) const
+{
+  return solve (FloatComplexColumnVector (b), info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatColumnVector& b, octave_idx_type& info, 
+		      float& rcond, 
+		      solve_singularity_handler sing_handler) const
+{
+  return solve (FloatComplexColumnVector (b), info, rcond, sing_handler);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatComplexColumnVector& b) const
+{
+  octave_idx_type info;
+  float rcond;
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatComplexColumnVector& b, octave_idx_type& info) const
+{
+  float rcond;
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatComplexColumnVector& b, octave_idx_type& info,
+		      float& rcond) const
+{
+  return solve (b, info, rcond, 0);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::solve (const FloatComplexColumnVector& b, octave_idx_type& info,
+		      float& rcond,
+		      solve_singularity_handler sing_handler) const
+{
+  MatrixType mattype (*this);
+  return solve (mattype, b, info, rcond, sing_handler);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatMatrix& b) const
+{
+  octave_idx_type info;
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (FloatComplexMatrix (b), info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info) const
+{
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (FloatComplexMatrix (b), info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info,
+			octave_idx_type& rank) const
+{
+  float rcond;
+  return lssolve (FloatComplexMatrix (b), info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatMatrix& b, octave_idx_type& info,
+			octave_idx_type& rank, float& rcond) const
+{
+  return lssolve (FloatComplexMatrix (b), info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatComplexMatrix& b) const
+{
+  octave_idx_type info;
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (b, info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info) const
+{
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (b, info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info,
+			octave_idx_type& rank) const
+{
+  float rcond;
+  return lssolve (b, info, rank, rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::lssolve (const FloatComplexMatrix& b, octave_idx_type& info, 
+			octave_idx_type& rank, float& rcond) const
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nrhs = b.cols ();
+
+  octave_idx_type m = rows ();
+  octave_idx_type n = cols ();
+
+  if (m != b.rows ())
+    (*current_liboctave_error_handler)
+      ("matrix dimension mismatch solution of linear equations");
+  else if (m== 0 || n == 0 || b.cols () == 0)
+    retval = FloatComplexMatrix (n, b.cols (), FloatComplex (0.0, 0.0));
+  else
+    {
+      volatile octave_idx_type minmn = (m < n ? m : n);
+      octave_idx_type maxmn = m > n ? m : n;
+      rcond = -1.0;
+
+      if (m != n)
+	{
+	  retval = FloatComplexMatrix (maxmn, nrhs);
+
+	  for (octave_idx_type j = 0; j < nrhs; j++)
+	    for (octave_idx_type i = 0; i < m; i++)
+	      retval.elem (i, j) = b.elem (i, j);
+	}
+      else
+	retval = b;
+
+      FloatComplexMatrix atmp = *this;
+      FloatComplex *tmp_data = atmp.fortran_vec ();
+
+      FloatComplex *pretval = retval.fortran_vec ();
+      Array<float> s (minmn);
+      float *ps = s.fortran_vec ();
+
+      // Ask ZGELSD what the dimension of WORK should be.
+      octave_idx_type lwork = -1;
+
+      Array<FloatComplex> work (1);
+
+      octave_idx_type smlsiz;
+      F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
+				   F77_CONST_CHAR_ARG2 (" ", 1),
+				   0, 0, 0, 0, smlsiz
+				   F77_CHAR_ARG_LEN (6)
+				   F77_CHAR_ARG_LEN (1));
+
+      octave_idx_type mnthr;
+      F77_FUNC (xilaenv, XILAENV) (6, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
+				   F77_CONST_CHAR_ARG2 (" ", 1),
+				   m, n, nrhs, -1, mnthr
+				   F77_CHAR_ARG_LEN (6)
+				   F77_CHAR_ARG_LEN (1));
+
+      // We compute the size of rwork and iwork because ZGELSD in
+      // older versions of LAPACK does not return them on a query
+      // call.
+      float dminmn = static_cast<float> (minmn);
+      float dsmlsizp1 = static_cast<float> (smlsiz+1);
+#if defined (HAVE_LOG2)
+      float tmp = log2 (dminmn / dsmlsizp1);
+#else
+      float tmp = log (dminmn / dsmlsizp1) / log (2.0);
+#endif
+      octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1;
+      if (nlvl < 0)
+	nlvl = 0;
+
+      octave_idx_type lrwork = minmn*(10 + 2*smlsiz + 8*nlvl)
+	+ 3*smlsiz*nrhs + (smlsiz+1)*(smlsiz+1);
+      if (lrwork < 1)
+	lrwork = 1;
+      Array<float> rwork (lrwork);
+      float *prwork = rwork.fortran_vec ();
+
+      octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn;
+      if (liwork < 1)
+	liwork = 1;
+      Array<octave_idx_type> iwork (liwork);
+      octave_idx_type* piwork = iwork.fortran_vec ();
+
+      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn,
+				 ps, rcond, rank, work.fortran_vec (),
+				 lwork, prwork, piwork, info));
+
+      // The workspace query is broken in at least LAPACK 3.0.0
+      // through 3.1.1 when n >= mnthr.  The obtuse formula below
+      // should provide sufficient workspace for ZGELSD to operate
+      // efficiently.
+      if (n >= mnthr)
+	{
+	  octave_idx_type addend = m;
+
+	  if (2*m-4 > addend)
+	    addend = 2*m-4;
+
+	  if (nrhs > addend)
+	    addend = nrhs;
+
+	  if (n-3*m > addend)
+	    addend = n-3*m;
+
+	  const octave_idx_type lworkaround = 4*m + m*m + addend;
+
+	  if (std::real (work(0)) < lworkaround)
+	    work(0) = lworkaround;
+	}
+      else if (m >= n)
+	{
+	  octave_idx_type lworkaround = 2*m + m*nrhs;
+
+	  if (std::real (work(0)) < lworkaround)
+	    work(0) = lworkaround;
+	}
+
+      lwork = static_cast<octave_idx_type> (std::real (work(0)));
+      work.resize (lwork);
+
+      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval,
+				 maxmn, ps, rcond, rank,
+				 work.fortran_vec (), lwork, 
+				 prwork, piwork, info));
+
+      if (rank < minmn)
+	(*current_liboctave_warning_handler) 
+	  ("zgelsd: rank deficient %dx%d matrix, rank = %d, tol = %e",
+	   m, n, rank, rcond);
+
+      if (s.elem (0) == 0.0)
+	rcond = 0.0;
+      else
+	rcond = s.elem (minmn - 1) / s.elem (0);
+
+      retval.resize (n, nrhs);
+    }
+
+  return retval;
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatColumnVector& b) const
+{
+  octave_idx_type info;
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (FloatComplexColumnVector (b), info, rank, rcond);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info) const
+{
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (FloatComplexColumnVector (b), info, rank, rcond);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info, 
+			octave_idx_type& rank) const
+{
+  float rcond;
+  return lssolve (FloatComplexColumnVector (b), info, rank, rcond);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatColumnVector& b, octave_idx_type& info, 
+			octave_idx_type& rank, float& rcond) const
+{
+  return lssolve (FloatComplexColumnVector (b), info, rank, rcond);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b) const
+{
+  octave_idx_type info;
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (b, info, rank, rcond);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b, octave_idx_type& info) const
+{
+  octave_idx_type rank;
+  float rcond;
+  return lssolve (b, info, rank, rcond);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b, octave_idx_type& info,
+			octave_idx_type& rank) const
+{
+  float rcond;
+  return lssolve (b, info, rank, rcond);
+
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::lssolve (const FloatComplexColumnVector& b, octave_idx_type& info,
+			octave_idx_type& rank, float& rcond) const
+{
+  FloatComplexColumnVector retval;
+
+  octave_idx_type nrhs = 1;
+
+  octave_idx_type m = rows ();
+  octave_idx_type n = cols ();
+
+  if (m != b.length ())
+    (*current_liboctave_error_handler)
+      ("matrix dimension mismatch solution of linear equations");
+  else if (m == 0 || n == 0 || b.cols () == 0)
+    retval = FloatComplexColumnVector (n, FloatComplex (0.0, 0.0));
+  else
+    {
+      volatile octave_idx_type minmn = (m < n ? m : n);
+      octave_idx_type maxmn = m > n ? m : n;
+      rcond = -1.0;
+
+      if (m != n)
+	{
+	  retval = FloatComplexColumnVector (maxmn);
+
+	  for (octave_idx_type i = 0; i < m; i++)
+	    retval.elem (i) = b.elem (i);
+	}
+      else
+	retval = b;
+
+      FloatComplexMatrix atmp = *this;
+      FloatComplex *tmp_data = atmp.fortran_vec ();
+
+      FloatComplex *pretval = retval.fortran_vec ();
+      Array<float> s (minmn);
+      float *ps = s.fortran_vec ();
+
+      // Ask ZGELSD what the dimension of WORK should be.
+      octave_idx_type lwork = -1;
+
+      Array<FloatComplex> work (1);
+
+      octave_idx_type smlsiz;
+      F77_FUNC (xilaenv, XILAENV) (9, F77_CONST_CHAR_ARG2 ("CGELSD", 6),
+				   F77_CONST_CHAR_ARG2 (" ", 1),
+				   0, 0, 0, 0, smlsiz
+				   F77_CHAR_ARG_LEN (6)
+				   F77_CHAR_ARG_LEN (1));
+
+      // We compute the size of rwork and iwork because ZGELSD in
+      // older versions of LAPACK does not return them on a query
+      // call.
+      float dminmn = static_cast<float> (minmn);
+      float dsmlsizp1 = static_cast<float> (smlsiz+1);
+#if defined (HAVE_LOG2)
+      float tmp = log2 (dminmn / dsmlsizp1);
+#else
+      float tmp = log (dminmn / dsmlsizp1) / log (2.0);
+#endif
+      octave_idx_type nlvl = static_cast<octave_idx_type> (tmp) + 1;
+      if (nlvl < 0)
+	nlvl = 0;
+
+      octave_idx_type lrwork = minmn*(10 + 2*smlsiz + 8*nlvl)
+	+ 3*smlsiz*nrhs + (smlsiz+1)*(smlsiz+1);
+      if (lrwork < 1)
+	lrwork = 1;
+      Array<float> rwork (lrwork);
+      float *prwork = rwork.fortran_vec ();
+
+      octave_idx_type liwork = 3 * minmn * nlvl + 11 * minmn;
+      if (liwork < 1)
+	liwork = 1;
+      Array<octave_idx_type> iwork (liwork);
+      octave_idx_type* piwork = iwork.fortran_vec ();
+
+      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval, maxmn,
+				 ps, rcond, rank, work.fortran_vec (),
+				 lwork, prwork, piwork, info));
+
+      lwork = static_cast<octave_idx_type> (std::real (work(0)));
+      work.resize (lwork);
+      rwork.resize (static_cast<octave_idx_type> (rwork(0)));
+      iwork.resize (iwork(0));
+
+      F77_XFCN (cgelsd, CGELSD, (m, n, nrhs, tmp_data, m, pretval,
+				 maxmn, ps, rcond, rank,
+				 work.fortran_vec (), lwork, 
+				 prwork, piwork, info));
+
+      if (rank < minmn)
+	{
+	  if (rank < minmn)
+	    (*current_liboctave_warning_handler) 
+	      ("zgelsd: rank deficient %dx%d matrix, rank = %d, tol = %e",
+	       m, n, rank, rcond);
+
+	  if (s.elem (0) == 0.0)
+	    rcond = 0.0;
+	  else
+	    rcond = s.elem (minmn - 1) / s.elem (0);
+
+	  retval.resize (n, nrhs);
+	}
+    }
+
+  return retval;
+}
+
+// Constants for matrix exponential calculation.
+
+static float padec [] =
+{
+  5.0000000000000000e-1,
+  1.1666666666666667e-1,
+  1.6666666666666667e-2,
+  1.6025641025641026e-3,
+  1.0683760683760684e-4,
+  4.8562548562548563e-6,
+  1.3875013875013875e-7,
+  1.9270852604185938e-9,
+};
+
+static void
+solve_singularity_warning (float rcond)
+{
+  (*current_liboctave_warning_handler) 
+    ("singular matrix encountered in expm calculation, rcond = %g",
+     rcond);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::expm (void) const
+{
+  FloatComplexMatrix retval;
+
+  FloatComplexMatrix m = *this;
+
+  octave_idx_type nc = columns ();
+
+  // Preconditioning step 1: trace normalization to reduce dynamic
+  // range of poles, but avoid making stable eigenvalues unstable.
+
+  // trace shift value
+  FloatComplex trshift = 0.0;
+
+  for (octave_idx_type i = 0; i < nc; i++)
+    trshift += m.elem (i, i);
+
+  trshift /= nc;
+
+  if (trshift.real () < 0.0)
+    {
+      trshift = trshift.imag ();
+      if (trshift.real () > 709.0)
+	trshift = 709.0;
+    }
+
+  for (octave_idx_type i = 0; i < nc; i++)
+    m.elem (i, i) -= trshift;
+
+  // Preconditioning step 2: eigenvalue balancing.
+  // code follows development in AEPBAL
+
+  FloatComplex *mp = m.fortran_vec ();
+
+  octave_idx_type info, ilo, ihi,ilos,ihis;
+  Array<float> dpermute (nc);
+  Array<float> dscale (nc);
+
+  // FIXME -- should pass job as a parameter in expm
+
+  // Permute first
+  char job = 'P';
+  F77_XFCN (cgebal, CGEBAL, (F77_CONST_CHAR_ARG2 (&job, 1),
+			     nc, mp, nc, ilo, ihi,
+			     dpermute.fortran_vec (), info
+			     F77_CHAR_ARG_LEN (1)));
+
+  // then scale
+  job = 'S';
+  F77_XFCN (cgebal, CGEBAL, (F77_CONST_CHAR_ARG2 (&job, 1),
+			     nc, mp, nc, ilos, ihis,
+			     dscale.fortran_vec (), info
+			     F77_CHAR_ARG_LEN (1)));
+
+  // Preconditioning step 3: scaling.
+
+  FloatColumnVector work (nc);
+  float inf_norm;
+
+  F77_XFCN (xclange, XCLANGE, (F77_CONST_CHAR_ARG2 ("I", 1),
+			       nc, nc, m.fortran_vec (), nc,
+			       work.fortran_vec (), inf_norm
+			       F77_CHAR_ARG_LEN (1)));
+
+  int sqpow = (inf_norm > 0.0
+	       ? static_cast<int> (1.0 + log (inf_norm) / log (2.0)) : 0);
+
+  // Check whether we need to square at all.
+
+  if (sqpow < 0)
+    sqpow = 0;
+
+  if (sqpow > 0)
+    {
+      if (sqpow > 1023)
+	sqpow = 1023;
+
+      float scale_factor = 1.0;
+      for (octave_idx_type i = 0; i < sqpow; i++)
+	scale_factor *= 2.0;
+
+      m = m / scale_factor;
+    }
+
+  // npp, dpp: pade' approx polynomial matrices.
+
+  FloatComplexMatrix npp (nc, nc, 0.0);
+  FloatComplex *pnpp = npp.fortran_vec ();
+  FloatComplexMatrix dpp = npp;
+  FloatComplex *pdpp = dpp.fortran_vec ();
+
+  // Now powers a^8 ... a^1.
+
+  int minus_one_j = -1;
+  for (octave_idx_type j = 7; j >= 0; j--)
+    {
+      for (octave_idx_type i = 0; i < nc; i++)
+	{
+	  octave_idx_type k = i * nc + i;
+	  pnpp[k] += padec[j];
+	  pdpp[k] += minus_one_j * padec[j];
+	}      
+
+      npp = m * npp;
+      pnpp = npp.fortran_vec ();
+
+      dpp = m * dpp;
+      pdpp = dpp.fortran_vec ();
+
+      minus_one_j *= -1;
+    }
+
+  // Zero power.
+
+  dpp = -dpp;
+  for (octave_idx_type j = 0; j < nc; j++)
+    {
+      npp.elem (j, j) += 1.0;
+      dpp.elem (j, j) += 1.0;
+    }
+
+  // Compute pade approximation = inverse (dpp) * npp.
+
+  float rcond;
+  retval = dpp.solve (npp, info, rcond, solve_singularity_warning);
+
+  if (info < 0)
+    return retval;
+
+  // Reverse preconditioning step 3: repeated squaring.
+
+  while (sqpow)
+    {
+      retval = retval * retval;
+      sqpow--;
+    }
+
+  // Reverse preconditioning step 2: inverse balancing.
+  // Done in two steps: inverse scaling, then inverse permutation
+
+  // inverse scaling (diagonal transformation)
+  for (octave_idx_type i = 0; i < nc; i++)
+    for (octave_idx_type j = 0; j < nc; j++)
+       retval(i,j) *= dscale(i) / dscale(j);
+
+  OCTAVE_QUIT;
+
+  // construct balancing permutation vector
+  Array<octave_idx_type> iperm (nc);
+  for (octave_idx_type i = 0; i < nc; i++)
+    iperm(i) = i;  // initialize to identity permutation
+
+  // leading permutations in forward order
+  for (octave_idx_type i = 0; i < (ilo-1); i++)
+    {
+      octave_idx_type swapidx = static_cast<octave_idx_type> (dpermute(i)) - 1;
+      octave_idx_type tmp = iperm(i);
+      iperm(i) = iperm(swapidx);
+      iperm(swapidx) = tmp;
+    }
+
+  // construct inverse balancing permutation vector
+  Array<octave_idx_type> invpvec (nc);
+  for (octave_idx_type i = 0; i < nc; i++)
+    invpvec(iperm(i)) = i;     // Thanks to R. A. Lippert for this method
+
+  OCTAVE_QUIT;
+
+  FloatComplexMatrix tmpMat = retval;
+  for (octave_idx_type i = 0; i < nc; i++)
+    for (octave_idx_type j = 0; j < nc; j++)
+      retval(i,j) = tmpMat(invpvec(i),invpvec(j));
+
+  OCTAVE_QUIT;
+
+  for (octave_idx_type i = 0; i < nc; i++)
+    iperm(i) = i;  // initialize to identity permutation
+
+  // trailing permutations must be done in reverse order
+  for (octave_idx_type i = nc - 1; i >= ihi; i--)
+    {
+      octave_idx_type swapidx = static_cast<octave_idx_type> (dpermute(i)) - 1;
+      octave_idx_type tmp = iperm(i);
+      iperm(i) = iperm(swapidx);
+      iperm(swapidx) = tmp;
+    }
+
+  // construct inverse balancing permutation vector
+  for (octave_idx_type i = 0; i < nc; i++)
+    invpvec(iperm(i)) = i;     // Thanks to R. A. Lippert for this method
+
+  OCTAVE_QUIT;
+
+  tmpMat = retval;
+  for (octave_idx_type i = 0; i < nc; i++)
+    for (octave_idx_type j = 0; j < nc; j++)
+      retval(i,j) = tmpMat(invpvec(i),invpvec(j));
+
+  // Reverse preconditioning step 1: fix trace normalization.
+
+  return exp (trshift) * retval;
+}
+
+// column vector by row vector -> matrix operations
+
+FloatComplexMatrix
+operator * (const FloatColumnVector& v, const FloatComplexRowVector& a)
+{
+  FloatComplexColumnVector tmp (v);
+  return tmp * a;
+}
+
+FloatComplexMatrix
+operator * (const FloatComplexColumnVector& a, const FloatRowVector& b)
+{
+  FloatComplexRowVector tmp (b);
+  return a * tmp;
+}
+
+FloatComplexMatrix
+operator * (const FloatComplexColumnVector& v, const FloatComplexRowVector& a)
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type len = v.length ();
+
+  if (len != 0)
+    {
+      octave_idx_type a_len = a.length ();
+
+      retval.resize (len, a_len);
+      FloatComplex *c = retval.fortran_vec ();
+
+      F77_XFCN (cgemm, CGEMM, (F77_CONST_CHAR_ARG2 ("N", 1),
+			       F77_CONST_CHAR_ARG2 ("N", 1),
+			       len, a_len, 1, 1.0, v.data (), len,
+			       a.data (), 1, 0.0, c, len
+			       F77_CHAR_ARG_LEN (1)
+			       F77_CHAR_ARG_LEN (1)));
+    }
+
+  return retval;
+}
+
+// matrix by diagonal matrix -> matrix operations
+
+FloatComplexMatrix&
+FloatComplexMatrix::operator += (const FloatDiagMatrix& a)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type a_nr = rows ();
+  octave_idx_type a_nc = cols ();
+
+  if (nr != a_nr || nc != a_nc)
+    {
+      gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc);
+      return *this;
+    }
+
+  for (octave_idx_type i = 0; i < a.length (); i++)
+    elem (i, i) += a.elem (i, i);
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::operator -= (const FloatDiagMatrix& a)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type a_nr = rows ();
+  octave_idx_type a_nc = cols ();
+
+  if (nr != a_nr || nc != a_nc)
+    {
+      gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc);
+      return *this;
+    }
+
+  for (octave_idx_type i = 0; i < a.length (); i++)
+    elem (i, i) -= a.elem (i, i);
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::operator += (const FloatComplexDiagMatrix& a)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type a_nr = rows ();
+  octave_idx_type a_nc = cols ();
+
+  if (nr != a_nr || nc != a_nc)
+    {
+      gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc);
+      return *this;
+    }
+
+  for (octave_idx_type i = 0; i < a.length (); i++)
+    elem (i, i) += a.elem (i, i);
+
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::operator -= (const FloatComplexDiagMatrix& a)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type a_nr = rows ();
+  octave_idx_type a_nc = cols ();
+
+  if (nr != a_nr || nc != a_nc)
+    {
+      gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc);
+      return *this;
+    }
+
+  for (octave_idx_type i = 0; i < a.length (); i++)
+    elem (i, i) -= a.elem (i, i);
+
+  return *this;
+}
+
+// matrix by matrix -> matrix operations
+
+FloatComplexMatrix&
+FloatComplexMatrix::operator += (const FloatMatrix& a)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type a_nc = a.cols ();
+
+  if (nr != a_nr || nc != a_nc)
+    {
+      gripe_nonconformant ("operator +=", nr, nc, a_nr, a_nc);
+      return *this;
+    }
+
+  if (nr == 0 || nc == 0)
+    return *this;
+
+  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!
+
+  mx_inline_add2 (d, a.data (), length ());
+  return *this;
+}
+
+FloatComplexMatrix&
+FloatComplexMatrix::operator -= (const FloatMatrix& a)
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type a_nc = a.cols ();
+
+  if (nr != a_nr || nc != a_nc)
+    {
+      gripe_nonconformant ("operator -=", nr, nc, a_nr, a_nc);
+      return *this;
+    }
+
+  if (nr == 0 || nc == 0)
+    return *this;
+
+  FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates!
+
+  mx_inline_subtract2 (d, a.data (), length ());
+  return *this;
+}
+
+// unary operations
+
+boolMatrix
+FloatComplexMatrix::operator ! (void) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  boolMatrix b (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      b.elem (i, j) = elem (i, j) == static_cast<float> (0.0);
+
+  return b;
+}
+
+// other operations
+
+FloatMatrix
+FloatComplexMatrix::map (dmapper fcn) const
+{
+  return MArray2<FloatComplex>::map<float> (func_ptr (fcn));
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::map (cmapper fcn) const
+{
+  return MArray2<FloatComplex>::map<FloatComplex> (func_ptr (fcn));
+}
+
+boolMatrix
+FloatComplexMatrix::map (bmapper fcn) const
+{
+  return MArray2<FloatComplex>::map<bool> (func_ptr (fcn));
+}
+
+bool
+FloatComplexMatrix::any_element_is_inf_or_nan (void) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	FloatComplex val = elem (i, j);
+	if (xisinf (val) || xisnan (val))
+	  return true;
+      }
+
+  return false;
+}
+
+// Return true if no elements have imaginary components.
+
+bool
+FloatComplexMatrix::all_elements_are_real (void) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    {
+      for (octave_idx_type i = 0; i < nr; i++)
+	{
+	  float ip = std::imag (elem (i, j));
+
+	  if (ip != 0.0 || lo_ieee_signbit (ip))
+	    return false;
+	}
+    }
+
+  return true;
+}
+
+// Return nonzero if any element of CM has a non-integer real or
+// imaginary part.  Also extract the largest and smallest (real or
+// imaginary) values and return them in MAX_VAL and MIN_VAL. 
+
+bool
+FloatComplexMatrix::all_integers (float& max_val, float& min_val) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      FloatComplex val = elem (0, 0);
+
+      float r_val = std::real (val);
+      float i_val = std::imag (val);
+
+      max_val = r_val;
+      min_val = r_val;
+
+      if (i_val > max_val)
+	max_val = i_val;
+
+      if (i_val < max_val)
+	min_val = i_val;
+    }
+  else
+    return false;
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	FloatComplex val = elem (i, j);
+
+	float r_val = std::real (val);
+	float i_val = std::imag (val);
+
+	if (r_val > max_val)
+	  max_val = r_val;
+
+	if (i_val > max_val)
+	  max_val = i_val;
+
+	if (r_val < min_val)
+	  min_val = r_val;
+
+	if (i_val < min_val)
+	  min_val = i_val;
+
+	if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val)
+	  return false;
+      }
+
+  return true;
+}
+
+bool
+FloatComplexMatrix::too_large_for_float (void) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	FloatComplex val = elem (i, j);
+
+	float r_val = std::real (val);
+	float i_val = std::imag (val);
+
+	if ((! (xisnan (r_val) || xisinf (r_val))
+	     && fabs (r_val) > FLT_MAX)
+	    || (! (xisnan (i_val) || xisinf (i_val))
+		&& fabs (i_val) > FLT_MAX))
+	  return true;
+      }
+
+  return false;
+}
+
+// FIXME Do these really belong here?  Maybe they should be
+// in a base class?
+
+boolMatrix
+FloatComplexMatrix::all (int dim) const
+{
+  // FIXME Can't use MX_ALL_OP as need to static cast to float to the ROW 
+  // and COL expressions
+
+#define ROW_EXPR \
+  if (elem (i, j) == static_cast<float> (0.0)) \
+    { \
+      retval.elem (i, 0) = false; \
+      break; \
+    }
+
+#define COL_EXPR \
+  if (elem (i, j) == static_cast<float> (0.0)) \
+    { \
+      retval.elem (0, j) = false; \
+      break; \
+    }
+  
+  MX_BASE_REDUCTION_OP (boolMatrix, ROW_EXPR, COL_EXPR, true, true);
+
+#undef ROW_EXPR
+#undef COL_EXPR
+}
+
+boolMatrix
+FloatComplexMatrix::any (int dim) const
+{
+  // FIXME Can't use MX_ANY_OP as need to static cast to float to the ROW 
+  // and COL expressions
+
+#define ROW_EXPR \
+  if (elem (i, j) != static_cast<float> (0.0)) \
+    { \
+      retval.elem (i, 0) = true; \
+      break; \
+    }
+
+#define COL_EXPR \
+  if (elem (i, j) != static_cast<float> (0.0)) \
+    { \
+      retval.elem (0, j) = true; \
+      break; \
+    }
+  
+  MX_BASE_REDUCTION_OP (boolMatrix, ROW_EXPR, COL_EXPR, false, false);
+
+#undef ROW_EXPR
+#undef COL_EXPR
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::cumprod (int dim) const
+{
+  MX_CUMULATIVE_OP (FloatComplexMatrix, FloatComplex, *=);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::cumsum (int dim) const
+{
+  MX_CUMULATIVE_OP (FloatComplexMatrix, FloatComplex, +=);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::prod (int dim) const
+{
+  MX_REDUCTION_OP (FloatComplexMatrix, *=, 1.0, 1.0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::sum (int dim) const
+{
+  MX_REDUCTION_OP (FloatComplexMatrix, +=, 0.0, 0.0);
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::sumsq (int dim) const
+{
+#define ROW_EXPR \
+  FloatComplex d = elem (i, j); \
+  retval.elem (i, 0) += d * conj (d)
+
+#define COL_EXPR \
+  FloatComplex d = elem (i, j); \
+  retval.elem (0, j) += d * conj (d)
+
+  MX_BASE_REDUCTION_OP (FloatComplexMatrix, ROW_EXPR, COL_EXPR, 0.0, 0.0);
+
+#undef ROW_EXPR
+#undef COL_EXPR
+}
+
+FloatMatrix FloatComplexMatrix::abs (void) const
+{
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  FloatMatrix retval (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      retval (i, j) = std::abs (elem (i, j));
+
+  return retval;
+}
+
+FloatComplexMatrix
+FloatComplexMatrix::diag (octave_idx_type k) const
+{
+  return MArray2<FloatComplex>::diag (k);
+}
+
+bool
+FloatComplexMatrix::row_is_real_only (octave_idx_type i) const
+{
+  bool retval = true;
+
+  octave_idx_type nc = columns ();
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    {
+      if (std::imag (elem (i, j)) != 0.0)
+	{
+	  retval = false;
+	  break;
+	}
+    }
+
+  return retval;	      
+}
+
+bool
+FloatComplexMatrix::column_is_real_only (octave_idx_type j) const
+{
+  bool retval = true;
+
+  octave_idx_type nr = rows ();
+
+  for (octave_idx_type i = 0; i < nr; i++)
+    {
+      if (std::imag (elem (i, j)) != 0.0)
+	{
+	  retval = false;
+	  break;
+	}
+    }
+
+  return retval;	      
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::row_min (void) const
+{
+  Array<octave_idx_type> dummy_idx;
+  return row_min (dummy_idx);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::row_min (Array<octave_idx_type>& idx_arg) const
+{
+  FloatComplexColumnVector result;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      result.resize (nr);
+      idx_arg.resize (nr);
+
+      for (octave_idx_type i = 0; i < nr; i++)
+        {
+	  bool real_only = row_is_real_only (i);
+
+	  octave_idx_type idx_j;
+
+	  FloatComplex tmp_min;
+
+	  float abs_min = octave_Float_NaN;
+
+	  for (idx_j = 0; idx_j < nc; idx_j++)
+	    {
+	      tmp_min = elem (i, idx_j);
+
+	      if (! xisnan (tmp_min))
+		{
+		  abs_min = real_only ? std::real (tmp_min) : std::abs (tmp_min);
+		  break;
+		}
+	    }
+
+	  for (octave_idx_type j = idx_j+1; j < nc; j++)
+	    {
+	      FloatComplex tmp = elem (i, j);
+
+	      if (xisnan (tmp))
+		continue;
+
+	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);
+
+	      if (abs_tmp < abs_min)
+		{
+		  idx_j = j;
+		  tmp_min = tmp;
+		  abs_min = abs_tmp;
+		}
+	    }
+
+	  if (xisnan (tmp_min))
+	    {
+	      result.elem (i) = FloatComplex_NaN_result;
+	      idx_arg.elem (i) = 0;
+	    }
+	  else
+	    {
+	      result.elem (i) = tmp_min;
+	      idx_arg.elem (i) = idx_j;
+	    }
+        }
+    }
+
+  return result;
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::row_max (void) const
+{
+  Array<octave_idx_type> dummy_idx;
+  return row_max (dummy_idx);
+}
+
+FloatComplexColumnVector
+FloatComplexMatrix::row_max (Array<octave_idx_type>& idx_arg) const
+{
+  FloatComplexColumnVector result;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      result.resize (nr);
+      idx_arg.resize (nr);
+
+      for (octave_idx_type i = 0; i < nr; i++)
+        {
+	  bool real_only = row_is_real_only (i);
+
+	  octave_idx_type idx_j;
+
+	  FloatComplex tmp_max;
+
+	  float abs_max = octave_Float_NaN;
+
+	  for (idx_j = 0; idx_j < nc; idx_j++)
+	    {
+	      tmp_max = elem (i, idx_j);
+
+	      if (! xisnan (tmp_max))
+		{
+		  abs_max = real_only ? std::real (tmp_max) : std::abs (tmp_max);
+		  break;
+		}
+	    }
+
+	  for (octave_idx_type j = idx_j+1; j < nc; j++)
+	    {
+	      FloatComplex tmp = elem (i, j);
+
+	      if (xisnan (tmp))
+		continue;
+
+	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);
+
+	      if (abs_tmp > abs_max)
+		{
+		  idx_j = j;
+		  tmp_max = tmp;
+		  abs_max = abs_tmp;
+		}
+	    }
+
+	  if (xisnan (tmp_max))
+	    {
+	      result.elem (i) = FloatComplex_NaN_result;
+	      idx_arg.elem (i) = 0;
+	    }
+	  else
+	    {
+	      result.elem (i) = tmp_max;
+	      idx_arg.elem (i) = idx_j;
+	    }
+        }
+    }
+
+  return result;
+}
+
+FloatComplexRowVector
+FloatComplexMatrix::column_min (void) const
+{
+  Array<octave_idx_type> dummy_idx;
+  return column_min (dummy_idx);
+}
+
+FloatComplexRowVector
+FloatComplexMatrix::column_min (Array<octave_idx_type>& idx_arg) const
+{
+  FloatComplexRowVector result;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      result.resize (nc);
+      idx_arg.resize (nc);
+
+      for (octave_idx_type j = 0; j < nc; j++)
+        {
+	  bool real_only = column_is_real_only (j);
+
+	  octave_idx_type idx_i;
+
+	  FloatComplex tmp_min;
+
+	  float abs_min = octave_Float_NaN;
+
+	  for (idx_i = 0; idx_i < nr; idx_i++)
+	    {
+	      tmp_min = elem (idx_i, j);
+
+	      if (! xisnan (tmp_min))
+		{
+		  abs_min = real_only ? std::real (tmp_min) : std::abs (tmp_min);
+		  break;
+		}
+	    }
+
+	  for (octave_idx_type i = idx_i+1; i < nr; i++)
+	    {
+	      FloatComplex tmp = elem (i, j);
+
+	      if (xisnan (tmp))
+		continue;
+
+	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);
+
+	      if (abs_tmp < abs_min)
+		{
+		  idx_i = i;
+		  tmp_min = tmp;
+		  abs_min = abs_tmp;
+		}
+	    }
+
+	  if (xisnan (tmp_min))
+	    {
+	      result.elem (j) = FloatComplex_NaN_result;
+	      idx_arg.elem (j) = 0;
+	    }
+	  else
+	    {
+	      result.elem (j) = tmp_min;
+	      idx_arg.elem (j) = idx_i;
+	    }
+        }
+    }
+
+  return result;
+}
+
+FloatComplexRowVector
+FloatComplexMatrix::column_max (void) const
+{
+  Array<octave_idx_type> dummy_idx;
+  return column_max (dummy_idx);
+}
+
+FloatComplexRowVector
+FloatComplexMatrix::column_max (Array<octave_idx_type>& idx_arg) const
+{
+  FloatComplexRowVector result;
+
+  octave_idx_type nr = rows ();
+  octave_idx_type nc = cols ();
+
+  if (nr > 0 && nc > 0)
+    {
+      result.resize (nc);
+      idx_arg.resize (nc);
+
+      for (octave_idx_type j = 0; j < nc; j++)
+        {
+	  bool real_only = column_is_real_only (j);
+
+	  octave_idx_type idx_i;
+
+	  FloatComplex tmp_max;
+
+	  float abs_max = octave_Float_NaN;
+
+	  for (idx_i = 0; idx_i < nr; idx_i++)
+	    {
+	      tmp_max = elem (idx_i, j);
+
+	      if (! xisnan (tmp_max))
+		{
+		  abs_max = real_only ? std::real (tmp_max) : std::abs (tmp_max);
+		  break;
+		}
+	    }
+
+	  for (octave_idx_type i = idx_i+1; i < nr; i++)
+	    {
+	      FloatComplex tmp = elem (i, j);
+
+	      if (xisnan (tmp))
+		continue;
+
+	      float abs_tmp = real_only ? std::real (tmp) : std::abs (tmp);
+
+	      if (abs_tmp > abs_max)
+		{
+		  idx_i = i;
+		  tmp_max = tmp;
+		  abs_max = abs_tmp;
+		}
+	    }
+
+	  if (xisnan (tmp_max))
+	    {
+	      result.elem (j) = FloatComplex_NaN_result;
+	      idx_arg.elem (j) = 0;
+	    }
+	  else
+	    {
+	      result.elem (j) = tmp_max;
+	      idx_arg.elem (j) = idx_i;
+	    }
+        }
+    }
+
+  return result;
+}
+
+// i/o
+
+std::ostream&
+operator << (std::ostream& os, const FloatComplexMatrix& a)
+{
+  for (octave_idx_type i = 0; i < a.rows (); i++)
+    {
+      for (octave_idx_type j = 0; j < a.cols (); j++)
+	{
+	  os << " ";
+	  octave_write_complex (os, a.elem (i, j));
+	}
+      os << "\n";
+    }
+  return os;
+}
+
+std::istream&
+operator >> (std::istream& is, FloatComplexMatrix& a)
+{
+  octave_idx_type nr = a.rows ();
+  octave_idx_type nc = a.cols ();
+
+  if (nr < 1 || nc < 1)
+    is.clear (std::ios::badbit);
+  else
+    {
+      FloatComplex tmp;
+      for (octave_idx_type i = 0; i < nr; i++)
+	for (octave_idx_type j = 0; j < nc; j++)
+	  {
+	    tmp = octave_read_complex (is);
+	    if (is)
+	      a.elem (i, j) = tmp;
+	    else
+	      goto done;
+	  }
+    }
+
+done:
+
+  return is;
+}
+
+FloatComplexMatrix
+Givens (const FloatComplex& x, const FloatComplex& y)
+{
+  float cc;
+  FloatComplex cs, temp_r;
+ 
+  F77_FUNC (clartg, CLARTG) (x, y, cc, cs, temp_r);
+
+  FloatComplexMatrix g (2, 2);
+
+  g.elem (0, 0) = cc;
+  g.elem (1, 1) = cc;
+  g.elem (0, 1) = cs;
+  g.elem (1, 0) = -conj (cs);
+
+  return g;
+}
+
+FloatComplexMatrix
+Sylvester (const FloatComplexMatrix& a, const FloatComplexMatrix& b,
+	   const FloatComplexMatrix& c)
+{
+  FloatComplexMatrix retval;
+
+  // FIXME -- need to check that a, b, and c are all the same
+  // size.
+
+  // Compute Schur decompositions
+
+  FloatComplexSCHUR as (a, "U");
+  FloatComplexSCHUR bs (b, "U");
+  
+  // Transform c to new coordinates.
+
+  FloatComplexMatrix ua = as.unitary_matrix ();
+  FloatComplexMatrix sch_a = as.schur_matrix ();
+
+  FloatComplexMatrix ub = bs.unitary_matrix ();
+  FloatComplexMatrix sch_b = bs.schur_matrix ();
+  
+  FloatComplexMatrix cx = ua.hermitian () * c * ub;
+
+  // Solve the sylvester equation, back-transform, and return the
+  // solution.
+
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type b_nr = b.rows ();
+
+  float scale;
+  octave_idx_type info;
+
+  FloatComplex *pa = sch_a.fortran_vec ();
+  FloatComplex *pb = sch_b.fortran_vec ();
+  FloatComplex *px = cx.fortran_vec ();
+  
+  F77_XFCN (ctrsyl, CTRSYL, (F77_CONST_CHAR_ARG2 ("N", 1),
+			     F77_CONST_CHAR_ARG2 ("N", 1),
+			     1, a_nr, b_nr, pa, a_nr, pb,
+			     b_nr, px, a_nr, scale, info
+			     F77_CHAR_ARG_LEN (1)
+			     F77_CHAR_ARG_LEN (1)));
+
+  // FIXME -- check info?
+
+  retval = -ua * cx * ub.hermitian ();
+
+  return retval;
+}
+
+FloatComplexMatrix
+operator * (const FloatComplexMatrix& m, const FloatMatrix& a)
+{
+  FloatComplexMatrix tmp (a);
+  return m * tmp;
+}
+
+FloatComplexMatrix
+operator * (const FloatMatrix& m, const FloatComplexMatrix& a)
+{
+  FloatComplexMatrix tmp (m);
+  return tmp * a;
+}
+
+/* Simple Dot Product, Matrix-Vector and Matrix-Matrix Unit tests
+%!assert([1+i 2+i 3+i] * [ 4+i ; 5+i ; 6+i], 29+21i, 1e-14)
+%!assert([1+i 2+i ; 3+i 4+i ] * [5+i ; 6+i], [15 + 14i ; 37 + 18i], 1e-14)
+%!assert([1+i 2+i ; 3+i 4+i ] * [5+i 6+i ; 7+i 8+i], [17 + 15i 20 + 17i; 41 + 19i 48 + 21i], 1e-14)
+*/
+
+/* Test some simple identities
+%!shared M, cv, rv
+%! M = randn(10,10)+i*rand(10,10);
+%! cv = randn(10,1)+i*rand(10,1);
+%! rv = randn(1,10)+i*rand(1,10);
+%!assert([M*cv,M*cv],M*[cv,cv],1e-14)
+%!assert([rv*M;rv*M],[rv;rv]*M,1e-14)
+%!assert(2*rv*cv,[rv,rv]*[cv;cv],1e-14)
+*/
+
+FloatComplexMatrix
+operator * (const FloatComplexMatrix& m, const FloatComplexMatrix& a)
+{
+  FloatComplexMatrix retval;
+
+  octave_idx_type nr = m.rows ();
+  octave_idx_type nc = m.cols ();
+
+  octave_idx_type a_nr = a.rows ();
+  octave_idx_type a_nc = a.cols ();
+
+  if (nc != a_nr)
+    gripe_nonconformant ("operator *", nr, nc, a_nr, a_nc);
+  else
+    {
+      if (nr == 0 || nc == 0 || a_nc == 0)
+	retval.resize (nr, a_nc, 0.0);
+      else
+	{
+	  octave_idx_type ld  = nr;
+	  octave_idx_type lda = a.rows ();
+
+	  retval.resize (nr, a_nc);
+	  FloatComplex *c = retval.fortran_vec ();
+
+	  if (a_nc == 1)
+	    {
+	      if (nr == 1)
+		F77_FUNC (xcdotu, XCDOTU) (nc, m.data (), 1, a.data (), 1, *c);
+	      else
+		{
+		  F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("N", 1),
+					   nr, nc, 1.0,  m.data (), ld,
+					   a.data (), 1, 0.0, c, 1
+					   F77_CHAR_ARG_LEN (1)));
+		}
+	    }
+	  else
+	    {
+	      F77_XFCN (cgemm, CGEMM, (F77_CONST_CHAR_ARG2 ("N", 1),
+				       F77_CONST_CHAR_ARG2 ("N", 1),
+				       nr, a_nc, nc, 1.0, m.data (),
+				       ld, a.data (), lda, 0.0, c, nr
+				       F77_CHAR_ARG_LEN (1)
+				       F77_CHAR_ARG_LEN (1)));
+	    }
+	}
+    }
+
+  return retval;
+}
+
+// FIXME -- it would be nice to share code among the min/max
+// functions below.
+
+#define EMPTY_RETURN_CHECK(T) \
+  if (nr == 0 || nc == 0) \
+    return T (nr, nc);
+
+FloatComplexMatrix
+min (const FloatComplex& c, const FloatComplexMatrix& m)
+{
+  octave_idx_type nr = m.rows ();
+  octave_idx_type nc = m.columns ();
+
+  EMPTY_RETURN_CHECK (FloatComplexMatrix);
+
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	OCTAVE_QUIT;
+	result (i, j) = xmin (c, m (i, j));
+      }
+
+  return result;
+}
+
+FloatComplexMatrix
+min (const FloatComplexMatrix& m, const FloatComplex& c)
+{
+  octave_idx_type nr = m.rows ();
+  octave_idx_type nc = m.columns ();
+
+  EMPTY_RETURN_CHECK (FloatComplexMatrix);
+
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	OCTAVE_QUIT;
+	result (i, j) = xmin (m (i, j), c);
+      }
+
+  return result;
+}
+
+FloatComplexMatrix
+min (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
+{
+  octave_idx_type nr = a.rows ();
+  octave_idx_type nc = a.columns ();
+
+  if (nr != b.rows () || nc != b.columns ())
+    {
+      (*current_liboctave_error_handler)
+	("two-arg min expecting args of same size");
+      return FloatComplexMatrix ();
+    }
+
+  EMPTY_RETURN_CHECK (FloatComplexMatrix);
+
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    {
+      int columns_are_real_only = 1;
+      for (octave_idx_type i = 0; i < nr; i++)
+	{
+	  OCTAVE_QUIT;
+	  if (std::imag (a (i, j)) != 0.0 || std::imag (b (i, j)) != 0.0)
+	    {
+	      columns_are_real_only = 0;
+	      break;
+	    }
+	}
+
+      if (columns_are_real_only)
+	{
+	  for (octave_idx_type i = 0; i < nr; i++)
+	    result (i, j) = xmin (std::real (a (i, j)), std::real (b (i, j)));
+	}
+      else
+	{
+	  for (octave_idx_type i = 0; i < nr; i++)
+	    {
+	      OCTAVE_QUIT;
+	      result (i, j) = xmin (a (i, j), b (i, j));
+	    }
+	}
+    }
+
+  return result;
+}
+
+FloatComplexMatrix
+max (const FloatComplex& c, const FloatComplexMatrix& m)
+{
+  octave_idx_type nr = m.rows ();
+  octave_idx_type nc = m.columns ();
+
+  EMPTY_RETURN_CHECK (FloatComplexMatrix);
+
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	OCTAVE_QUIT;
+	result (i, j) = xmax (c, m (i, j));
+      }
+
+  return result;
+}
+
+FloatComplexMatrix
+max (const FloatComplexMatrix& m, const FloatComplex& c)
+{
+  octave_idx_type nr = m.rows ();
+  octave_idx_type nc = m.columns ();
+
+  EMPTY_RETURN_CHECK (FloatComplexMatrix);
+
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    for (octave_idx_type i = 0; i < nr; i++)
+      {
+	OCTAVE_QUIT;
+	result (i, j) = xmax (m (i, j), c);
+      }
+
+  return result;
+}
+
+FloatComplexMatrix
+max (const FloatComplexMatrix& a, const FloatComplexMatrix& b)
+{
+  octave_idx_type nr = a.rows ();
+  octave_idx_type nc = a.columns ();
+
+  if (nr != b.rows () || nc != b.columns ())
+    {
+      (*current_liboctave_error_handler)
+	("two-arg max expecting args of same size");
+      return FloatComplexMatrix ();
+    }
+
+  EMPTY_RETURN_CHECK (FloatComplexMatrix);
+
+  FloatComplexMatrix result (nr, nc);
+
+  for (octave_idx_type j = 0; j < nc; j++)
+    {
+      int columns_are_real_only = 1;
+      for (octave_idx_type i = 0; i < nr; i++)
+	{
+	  OCTAVE_QUIT;
+	  if (std::imag (a (i, j)) != 0.0 || std::imag (b (i, j)) != 0.0)
+	    {
+	      columns_are_real_only = 0;
+	      break;
+	    }
+	}
+
+      if (columns_are_real_only)
+	{
+	  for (octave_idx_type i = 0; i < nr; i++)
+	    {
+	      OCTAVE_QUIT;
+	      result (i, j) = xmax (std::real (a (i, j)), std::real (b (i, j)));
+	    }
+	}
+      else
+	{
+	  for (octave_idx_type i = 0; i < nr; i++)
+	    {
+	      OCTAVE_QUIT;
+	      result (i, j) = xmax (a (i, j), b (i, j));
+	    }
+	}
+    }
+
+  return result;
+}
+
+MS_CMP_OPS(FloatComplexMatrix, std::real, FloatComplex, std::real)
+MS_BOOL_OPS(FloatComplexMatrix, FloatComplex, static_cast<float> (0.0))
+
+SM_CMP_OPS(FloatComplex, std::real, FloatComplexMatrix, std::real)
+SM_BOOL_OPS(FloatComplex, FloatComplexMatrix, static_cast<float> (0.0))
+
+MM_CMP_OPS(FloatComplexMatrix, std::real, FloatComplexMatrix, std::real)
+MM_BOOL_OPS(FloatComplexMatrix, FloatComplexMatrix, static_cast<float> (0.0))
+
+/*
+;;; Local Variables: ***
+;;; mode: C++ ***
+;;; End: ***
+*/