Mercurial > hg > octave-nkf
diff scripts/specfun/primes.m @ 19288:90dd85369c2e
primes.m: Overhaul function.
* primes.m: Rewrite docstring. Use same variable names in function declaration
as in code. Return output with same class as input for Matlab compatibility.
Add input validation check.
author | Rik <rik@octave.org> |
---|---|
date | Fri, 19 Sep 2014 12:51:12 -0700 |
parents | d63878346099 |
children | fbe5a2dd64ae |
line wrap: on
line diff
--- a/scripts/specfun/primes.m +++ b/scripts/specfun/primes.m @@ -18,12 +18,13 @@ ## -*- texinfo -*- ## @deftypefn {Function File} {} primes (@var{n}) -## ## Return all primes up to @var{n}. ## -## The algorithm used is the Sieve of Eratosthenes. +## The output data class (double, single, uint32, etc.) is the same as +## the input class of @var{n}. The algorithm used is the Sieve of +## Eratosthenes. ## -## Note that if you need a specific number of primes you can use the +## Notes: If you need a specific number of primes you can use the ## fact that the distance from one prime to the next is, on average, ## proportional to the logarithm of the prime. Integrating, one finds ## that there are about @math{k} primes less than @@ -33,6 +34,9 @@ ## @ifnottex ## k*log (5*k). ## @end ifnottex +## +## See also @code{list_primes} if you need a specific number @var{n} of +## primes. ## @seealso{list_primes, isprime} ## @end deftypefn @@ -40,7 +44,7 @@ ## Author: Francesco Potortì ## Author: Dirk Laurie -function x = primes (n) +function p = primes (n) if (nargin != 1) print_usage (); @@ -50,9 +54,9 @@ error ("primes: N must be a scalar"); endif - if (n > 100000) + if (n > 100e3) ## Optimization: 1/6 less memory, and much faster (asymptotically) - ## 100000 happens to be the cross-over point for Paul's machine; + ## 100K happens to be the cross-over point for Paul's machine; ## below this the more direct code below is faster. At the limit ## of memory in Paul's machine, this saves .7 seconds out of 7 for ## n = 3e6. Hardly worthwhile, but Dirk reports better numbers. @@ -71,8 +75,8 @@ sievem(5*i+1:6*i+1:lenm) = false; endif endfor - x = sort ([2, 3, 6*find(sievem)-1, 6*find(sievep)+1]); - elseif (n > 352) # nothing magical about 352; must be >2 + p = sort ([2, 3, 6*find(sievem)-1, 6*find(sievep)+1]); + elseif (n > 352) # nothing magical about 352; must be > 2 len = floor ((n-1)/2); # length of the sieve sieve = true (1, len); # assume every odd number is prime for i = 1:(sqrt (n)-1)/2 # check up to sqrt (n) @@ -80,7 +84,7 @@ sieve(3*i+1:2*i+1:len) = false; # do it endif endfor - x = [2, 1+2*find(sieve)]; # primes remaining after sieve + p = [2, 1+2*find(sieve)]; # primes remaining after sieve else a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ... 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, ... @@ -88,7 +92,11 @@ 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, ... 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, ... 293, 307, 311, 313, 317, 331, 337, 347, 349]; - x = a(a <= n); + p = a(a <= n); + endif + + if (! isa (n, "double")) + cast (p, class (n)); endif endfunction @@ -99,4 +107,5 @@ %!error primes () %!error primes (1, 2) +%!error <N must be a scalar> primes (1, ones (2,2))