Mercurial > hg > octave-nkf
diff scripts/geometry/griddata.m @ 6823:9fddcc586065
[project @ 2007-08-24 08:27:27 by dbateman]
author | dbateman |
---|---|
date | Fri, 24 Aug 2007 08:27:29 +0000 |
parents | |
children | 8618f29520c6 |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/scripts/geometry/griddata.m @@ -0,0 +1,155 @@ +## Copyright (C) 1999,2000 Kai Habel +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2, or (at your option) +## any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, write to the Free +## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA +## 02110-1301, USA. + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) +## @deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) +## +## Generate a regular mesh from irregular data using interpolation. +## The function is defined by @code{@var{z} = f (@var{x}, @var{y})}. +## The interpolation points are all @code{(@var{xi}, @var{yi})}. If +## @var{xi}, @var{yi} are vectors then they are made into a 2D mesh. +## +## The interpolation method can be 'nearest', 'cubic' or 'linear'. +## If method is omitted it defaults to 'linear'. +## @seealso{delaunay} +## @end deftypefn + +## Author: Kai Habel <kai.habel@gmx.de> +## Adapted-by: Alexander Barth <barth.alexander@gmail.com> +## xi and yi are not "meshgridded" if both are vectors +## of the same size (for compatibility) + +function [rx, ry, rz] = griddata (x,y,z,xi,yi,method) + + if (nargin == 5) + method="linear"; + endif + if (nargin < 5 || nargin > 7) + print_usage(); + endif + + if (ischar(method)) + method=tolower(method); + endif + if (!all( (size(x)==size(y)) & (size(x)==size(z)))) + error("griddata: x,y,z must be vectors of same length"); + endif + + ## meshgrid xi and yi if they are vectors unless they + ## are vectors of the same length + if (isvector(xi) && isvector(yi) && numel(xi) ~= numel(yi)) + [xi,yi]=meshgrid(xi,yi); + endif + + if (any(size(xi) != size(yi))) + error("griddata: xi and yi must be vectors or matrices of same size"); + endif + + [nr,nc] = size(xi); + + ## triangulate data + tri = delaunay(x,y); + zi = nan(size(xi)); + + if strcmp(method,"cubic") + error("griddata(...,'cubic') cubic interpolation not yet implemented\n") + + elseif strcmp(method,'nearest') + ## search index of nearest point + idx = dsearch(x,y,tri,xi,yi); + valid = !isnan(idx); + zi(valid) = z(idx(valid)); + + elseif strcmp(method,'linear') + ## search for every point the enclosing triangle + tri_list= tsearch(x,y,tri,xi(:),yi(:)); + + ## only keep the points within triangles. + valid = !isnan(reshape(tri_list,size(xi))); + tri_list = tri_list(!isnan(tri_list)); + nr_t = rows(tri_list); + + ## assign x,y,z for each point of triangle + x1 = x(tri(tri_list,1));y1=y(tri(tri_list,1));z1=z(tri(tri_list,1)); + x2 = x(tri(tri_list,2));y2=y(tri(tri_list,2));z2=z(tri(tri_list,2)); + x3 = x(tri(tri_list,3));y3=y(tri(tri_list,3));z3=z(tri(tri_list,3)); + + ## calculate norm vector + N = cross([x2-x1, y2-y1, z2-z1],[x3-x1, y3-y1, z3-z1]); + N_norm = sqrt(sumsq(N,2)); + N = N ./ N_norm(:,[1,1,1]); + + ## calculate D of plane equation + ## Ax+By+Cz+D=0; + D = -(N(:,1) .* x1 + N(:,2) .* y1 + N(:,3) .* z1); + + ## calculate zi by solving plane equation for xi,yi + zi(valid) = -(N(:,1).*xi(valid) + N(:,2).*yi(valid) + D ) ./ N(:,3); + + else + error("griddata: unknown interpolation method"); + endif + + if nargout == 3 + rx = xi; + ry = yi; + rz = zi; + elseif nargout == 1 + rx = zi; + elseif nargout == 0 + mesh(xi, yi, zi); + endif +endfunction + +%!test +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! x = xx(:); +%! x = x + 10 * (2 * round(rand(size(x))) - 1) * eps; +%! y = yy(:); +%! y = y + 10 * (2 * round(rand(size(y))) - 1) * eps; +%! z = sin(2*(x.^2+y.^2)); +%! zz = griddata(x,y,z,xx,yy,'linear'); +%! zz2 = sin(2*(xx.^2+yy.^2)); +%! zz2(isnan(zz)) = NaN; +%! assert (zz, zz2, 100 * eps) + +%!demo +%! x=2*rand(100,1)-1; +%! y=2*rand(size(x))-1; +%! z=sin(2*(x.^2+y.^2)); +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! griddata(x,y,z,xx,yy); +%! title('nonuniform grid sampled at 100 points'); + +%!demo +%! x=2*rand(1000,1)-1; +%! y=2*rand(size(x))-1; +%! z=sin(2*(x.^2+y.^2)); +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! griddata(x,y,z,xx,yy); +%! title('nonuniform grid sampled at 1000 points'); + +%!demo +%! x=2*rand(1000,1)-1; +%! y=2*rand(size(x))-1; +%! z=sin(2*(x.^2+y.^2)); +%! [xx,yy]=meshgrid(linspace(-1,1,32)); +%! griddata(x,y,z,xx,yy,'nearest'); +%! title('nonuniform grid sampled at 1000 points with nearest neighbor');