Mercurial > hg > octave-nkf
diff scripts/sparse/cgs.m @ 8338:a35bf360b919
Add the cgs and treelayout functions
author | Radek Salac <salac.r@gmail.com> |
---|---|
date | Fri, 21 Nov 2008 15:03:03 +0100 |
parents | |
children | cadc73247d65 |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/scripts/sparse/cgs.m @@ -0,0 +1,160 @@ +## Copyright (C) 2008 Radek Salac +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## <http://www.gnu.org/licenses/>. + +## -*- texinfo -*- +## @deftypefn {Function File} {} cgs (@var{A}, @var{b}) +## @deftypefnx {Function File} {} cgs (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}) +## This procedure attempts to solve a system of linear equations A*x = b for x. +## The @var{A} must be square, symmetric and positive definite real matrix N*N. +## The @var{b} must be a one column vector with a length of N. +## The @var{tol} specifies the tolerance of the method, default value is 1e-6. +## The @var{maxit} specifies the maximum number of iteration, default value is MIN(20,N). +## The @var{M1} specifies a preconditioner, can also be a function handler which returns M\X. +## The @var{M2} combined with @var{M1} defines preconditioner as preconditioner=M1*M2. +## The @var{x0} is initial guess, default value is zeros(N,1). +## +## @end deftypefn + +function [x, flag, relres, iter, resvec] = cgs (A, b, tol, maxit, M1, M2, x0) + + if (nargin < 2 || nargin > 7 || nargout > 5) + print_usage (); + elseif (!isnumeric (A) || rows (A) != columns (A)) + error ("cgs: first argument must be a n-by-n matrix"); + elseif (!isvector (b)) + error ("cgs: b must be a vector"); + elseif (rows (A) != rows (b)) + error ("cgs: first and second argument must have the same number of rows"); + elseif (nargin > 2 && !isscalar (tol)) + error ("cgs: tol must be a scalar"); + elseif (nargin > 3 && !isscalar (maxit)) + error ("cgs: maxit must be a scalar"); + elseif (nargin > 4 && ismatrix (M1) && (rows (M1) != rows (A) || columns (M1) != columns (A))) + error ("cgs: M1 must have the same number of rows and columns as A"); + elseif (nargin > 5 && (!ismatrix (M2) || rows (M2) != rows (A) || columns (M2) != columns (A))) + error ("cgs: M2 must have the same number of rows and columns as A"); + elseif (nargin > 6 && !isvector (x0)) + error ("cgs: x0 must be a vector"); + elseif (nargin > 6 && rows (x0) != rows (b)) + error ("cgs: xO must have the same number of rows as b"); + endif + + ## default toleration + if (nargin < 3) + tol = 1e-6; + endif + + ## default maximum number of iteration + if (nargin < 4) + maxit = min (rows (b),20); + endif + + + ## left preconditioner + precon = []; + if (nargin == 5) + precon = M1; + elseif (nargin > 5) + if (isparse(M1) && issparse(M2)) + precon = @(x) M1 * (M2 * x); + else + precon = M1 * M2; + endif + endif + + ## precon can by also function + if (nargin > 4 && isnumeric (precon)) + + ## we can compute inverse preconditioner and use quicker algorithm + if (det (precon) != 0) + precon=inv (precon); + else + error ("cgs: preconditioner is ill conditioned"); + endif + + ## we must make test if preconditioner isn't ill conditioned + if (isinf (cond (precon))); + error ("cgs: preconditioner is ill conditioned"); + endif + endif + + ## specifies initial estimate x0 + if (nargin < 7) + x = zeros (rows (b), 1); + else + x = x0; + endif + + relres = b - A * x; + ## vector of the residual norms for each iteration + resvec = [norm(relres)]; + ro = 0; + norm_b = norm (b); + ## default behaviour we don't reach tolerance tol within maxit iterations + flag = 1; + for iter = 1 : maxit + + if (nargin > 4 && isnumeric (precon)) + ## we have computed inverse matrix so we can use quick algorithm + z = precon * relres; + elseif (nargin > 4) + ## our preconditioner is a function + z = feval (precon, relres); + else + ## we don't use preconditioning + z = relres; + endif + + ## cache + ro_old = ro; + ro = relres' * z; + if (iter == 1) + p = z; + else + beta = ro / ro_old; + p = z + beta * p; + endif + q = A * p; #cache + alpha = ro / (p' * q); + x = x + alpha * p; + + relres = relres - alpha * q; + resvec = [resvec; norm(relres)]; + + relres_distance = resvec (end) / norm_b; + if (relres_distance <= tol) + ## we reach tolerance tol within maxit iterations + flag = 0; + break; + elseif (resvec (end) == resvec (end - 1) ) + ## the method stagnates + flag = 3; + break; + endif + endfor; + + relres = relres_distance; +endfunction + + + +%!demo +%! % Solve system of A*x=b +%! A=[5 -1 3;-1 2 -2;3 -2 3] +%! b=[7;-1;4] +%! [a,b,c,d,e]=cgs(A,b)