Mercurial > hg > octave-nkf
diff scripts/control/base/nyquist.m @ 5016:bdbee5282954
[project @ 2004-09-22 02:50:35 by jwe]
author | jwe |
---|---|
date | Wed, 22 Sep 2004 02:50:36 +0000 |
parents | b8105302cfe8 |
children | 32c569794216 |
line wrap: on
line diff
--- a/scripts/control/base/nyquist.m +++ b/scripts/control/base/nyquist.m @@ -23,22 +23,22 @@ ## plot is printed to the screen. ## ## Compute the frequency response of a system. +## ## @strong{Inputs} (pass as empty to get default values) ## @table @var ## @item sys ## system data structure (must be either purely continuous or discrete; -## see is_digital) +## see @code{is_digital}) ## @item w ## frequency values for evaluation. -## if sys is continuous, then bode evaluates @math{G(jw)} -## if sys is discrete, then bode evaluates @math{G(exp(jwT))}, where -## @math{T} is the system sampling time. +## If sys is continuous, then bode evaluates @math{G(@var{jw})}; +## if sys is discrete, then bode evaluates @math{G(exp(@var{jwT}))}, +## where @var{T} is the system sampling time. ## @item default ## the default frequency range is selected as follows: (These -## steps are NOT performed if @var{w} is specified) -## @end table +## steps are @strong{not} performed if @var{w} is specified) ## @enumerate -## @item via routine __bodquist__, isolate all poles and zeros away from +## @item via routine @command{__bodquist__}, isolate all poles and zeros away from ## @var{w}=0 (@var{jw}=0 or @math{exp(@var{jwT})=1}) and select the frequency ## range based on the breakpoint locations of the frequencies. ## @item if @var{sys} is discrete time, the frequency range is limited @@ -47,17 +47,14 @@ ## [0,2p*pi] ## @end ifinfo ## @iftex -## $[0,2p*\pi]$ +## @tex +## $ [ 0,2 p \pi ] $ +## @end tex ## @end iftex -## @item A "smoothing" routine is used to ensure that the plot phase does +## @item A ``smoothing'' routine is used to ensure that the plot phase does ## not change excessively from point to point and that singular ## points (e.g., crossovers from +/- 180) are accurately shown. ## @end enumerate -## outputs, inputs: names or indices of the output(s) and input(s) to be -## used in the frequency response; see sysprune. -## -## @strong{Inputs} (pass as empty to get default values) -## @table @var ## @item atol ## for interactive nyquist plots: atol is a change-in-slope tolerance ## for the of asymptotes (default = 0; 1e-2 is a good choice). This allows @@ -70,7 +67,7 @@ ## @itemx imagp ## the real and imaginary parts of the frequency response ## @math{G(jw)} or @math{G(exp(jwT))} at the selected frequency values. -## @item w +## @item w ## the vector of frequency values used ## @end table ## @@ -79,9 +76,17 @@ ## interactively if they wish to zoom in (remove asymptotes) ## Descriptive labels are automatically placed. ## -## Note: if the requested plot is for an MIMO system, a warning message is +## Note: if the requested plot is for an @acronym{MIMO} system, a warning message is ## presented; the returned information is of the magnitude -## ||G(jw)|| or ||G(exp(jwT))|| only; phase information is not computed. +## @iftex +## @tex +## $ \Vert G(jw) \Vert $ or $ \Vert G( {\rm exp}(jwT) \Vert $ +## @end tex +## @end iftex +## @ifinfo +## ||G(jw)|| or ||G(exp(jwT))|| +## @end ifinfo +## only; phase information is not computed. ## @end deftypefn ## Author: R. Bruce Tenison <btenison@eng.auburn.edu>